consequentially¡¡connected¡¡with¡¡their¡¡subjects¡£¡¡For¡¡it¡¡is¡¡impossible
for¡¡them¡¡not¡¡to¡¡inhere¡¡in¡¡their¡¡subjects¡¡either¡¡simply¡¡or¡¡in¡¡the
qualified¡¡sense¡¡that¡¡one¡¡or¡¡other¡¡of¡¡a¡¡pair¡¡of¡¡opposites¡¡must¡¡inhere
in¡¡the¡¡subject£»¡¡e¡£g¡£¡¡in¡¡line¡¡must¡¡be¡¡either¡¡straightness¡¡or¡¡curvature£»
in¡¡number¡¡either¡¡oddness¡¡or¡¡evenness¡£¡¡For¡¡within¡¡a¡¡single¡¡identical
genus¡¡the¡¡contrary¡¡of¡¡a¡¡given¡¡attribute¡¡is¡¡either¡¡its¡¡privative¡¡or¡¡its
contradictory£»¡¡e¡£g¡£¡¡within¡¡number¡¡what¡¡is¡¡not¡¡odd¡¡is¡¡even£»¡¡inasmuch¡¡as
within¡¡this¡¡sphere¡¡even¡¡is¡¡a¡¡necessary¡¡consequent¡¡of¡¡not¡odd¡£¡¡So£»
since¡¡any¡¡given¡¡predicate¡¡must¡¡be¡¡either¡¡affirmed¡¡or¡¡denied¡¡of¡¡any
subject£»¡¡essential¡¡attributes¡¡must¡¡inhere¡¡in¡¡their¡¡subjects¡¡of
necessity¡£
¡¡¡¡Thus£»¡¡then£»¡¡we¡¡have¡¡established¡¡the¡¡distinction¡¡between¡¡the
attribute¡¡which¡¡is¡¡'true¡¡in¡¡every¡¡instance'¡¡and¡¡the¡¡'essential'
attribute¡£
¡¡¡¡I¡¡term¡¡'commensurately¡¡universal'¡¡an¡¡attribute¡¡which¡¡belongs¡¡to
every¡¡instance¡¡of¡¡its¡¡subject£»¡¡and¡¡to¡¡every¡¡instance¡¡essentially¡¡and
as¡¡such£»¡¡from¡¡which¡¡it¡¡clearly¡¡follows¡¡that¡¡all¡¡commensurate
universals¡¡inhere¡¡necessarily¡¡in¡¡their¡¡subjects¡£¡¡The¡¡essential
attribute£»¡¡and¡¡the¡¡attribute¡¡that¡¡belongs¡¡to¡¡its¡¡subject¡¡as¡¡such£»
are¡¡identical¡£¡¡E¡£g¡£¡¡point¡¡and¡¡straight¡¡belong¡¡to¡¡line¡¡essentially£»¡¡for
they¡¡belong¡¡to¡¡line¡¡as¡¡such£»¡¡and¡¡triangle¡¡as¡¡such¡¡has¡¡two¡¡right
angles£»¡¡for¡¡it¡¡is¡¡essentially¡¡equal¡¡to¡¡two¡¡right¡¡angles¡£
¡¡¡¡An¡¡attribute¡¡belongs¡¡commensurately¡¡and¡¡universally¡¡to¡¡a¡¡subject
when¡¡it¡¡can¡¡be¡¡shown¡¡to¡¡belong¡¡to¡¡any¡¡random¡¡instance¡¡of¡¡that
subject¡¡and¡¡when¡¡the¡¡subject¡¡is¡¡the¡¡first¡¡thing¡¡to¡¡which¡¡it¡¡can¡¡be
shown¡¡to¡¡belong¡£¡¡Thus£»¡¡e¡£g¡£¡¡£¨1£©¡¡the¡¡equality¡¡of¡¡its¡¡angles¡¡to¡¡two
right¡¡angles¡¡is¡¡not¡¡a¡¡commensurately¡¡universal¡¡attribute¡¡of¡¡figure¡£
For¡¡though¡¡it¡¡is¡¡possible¡¡to¡¡show¡¡that¡¡a¡¡figure¡¡has¡¡its¡¡angles¡¡equal
to¡¡two¡¡right¡¡angles£»¡¡this¡¡attribute¡¡cannot¡¡be¡¡demonstrated¡¡of¡¡any
figure¡¡selected¡¡at¡¡haphazard£»¡¡nor¡¡in¡¡demonstrating¡¡does¡¡one¡¡take¡¡a
figure¡¡at¡¡random¡a¡¡square¡¡is¡¡a¡¡figure¡¡but¡¡its¡¡angles¡¡are¡¡not¡¡equal
to¡¡two¡¡right¡¡angles¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡any¡¡isosceles¡¡triangle¡¡has¡¡its
angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡yet¡¡isosceles¡¡triangle¡¡is¡¡not¡¡the
primary¡¡subject¡¡of¡¡this¡¡attribute¡¡but¡¡triangle¡¡is¡¡prior¡£¡¡So¡¡whatever
can¡¡be¡¡shown¡¡to¡¡have¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡or¡¡to
possess¡¡any¡¡other¡¡attribute£»¡¡in¡¡any¡¡random¡¡instance¡¡of¡¡itself¡¡and
primarily¡that¡¡is¡¡the¡¡first¡¡subject¡¡to¡¡which¡¡the¡¡predicate¡¡in¡¡question
belongs¡¡commensurately¡¡and¡¡universally£»¡¡and¡¡the¡¡demonstration£»¡¡in
the¡¡essential¡¡sense£»¡¡of¡¡any¡¡predicate¡¡is¡¡the¡¡proof¡¡of¡¡it¡¡as
belonging¡¡to¡¡this¡¡first¡¡subject¡¡commensurately¡¡and¡¡universally£º
while¡¡the¡¡proof¡¡of¡¡it¡¡as¡¡belonging¡¡to¡¡the¡¡other¡¡subjects¡¡to¡¡which¡¡it
attaches¡¡is¡¡demonstration¡¡only¡¡in¡¡a¡¡secondary¡¡and¡¡unessential¡¡sense¡£
Nor¡¡again¡¡£¨2£©¡¡is¡¡equality¡¡to¡¡two¡¡right¡¡angles¡¡a¡¡commensurately
universal¡¡attribute¡¡of¡¡isosceles£»¡¡it¡¡is¡¡of¡¡wider¡¡application¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5
¡¡¡¡We¡¡must¡¡not¡¡fail¡¡to¡¡observe¡¡that¡¡we¡¡often¡¡fall¡¡into¡¡error¡¡because
our¡¡conclusion¡¡is¡¡not¡¡in¡¡fact¡¡primary¡¡and¡¡commensurately¡¡universal
in¡¡the¡¡sense¡¡in¡¡which¡¡we¡¡think¡¡we¡¡prove¡¡it¡¡so¡£¡¡We¡¡make¡¡this¡¡mistake
£¨1£©¡¡when¡¡the¡¡subject¡¡is¡¡an¡¡individual¡¡or¡¡individuals¡¡above¡¡which¡¡there
is¡¡no¡¡universal¡¡to¡¡be¡¡found£º¡¡£¨2£©¡¡when¡¡the¡¡subjects¡¡belong¡¡to¡¡different
species¡¡and¡¡there¡¡is¡¡a¡¡higher¡¡universal£»¡¡but¡¡it¡¡has¡¡no¡¡name£º¡¡£¨3£©
when¡¡the¡¡subject¡¡which¡¡the¡¡demonstrator¡¡takes¡¡as¡¡a¡¡whole¡¡is¡¡really
only¡¡a¡¡part¡¡of¡¡a¡¡larger¡¡whole£»¡¡for¡¡then¡¡the¡¡demonstration¡¡will¡¡be¡¡true
of¡¡the¡¡individual¡¡instances¡¡within¡¡the¡¡part¡¡and¡¡will¡¡hold¡¡in¡¡every
instance¡¡of¡¡it£»¡¡yet¡¡the¡¡demonstration¡¡will¡¡not¡¡be¡¡true¡¡of¡¡this¡¡subject
primarily¡¡and¡¡commensurately¡¡and¡¡universally¡£¡¡When¡¡a¡¡demonstration
is¡¡true¡¡of¡¡a¡¡subject¡¡primarily¡¡and¡¡commensurately¡¡and¡¡universally£»
that¡¡is¡¡to¡¡be¡¡taken¡¡to¡¡mean¡¡that¡¡it¡¡is¡¡true¡¡of¡¡a¡¡given¡¡subject
primarily¡¡and¡¡as¡¡such¡£¡¡Case¡¡£¨3£©¡¡may¡¡be¡¡thus¡¡exemplified¡£¡¡If¡¡a¡¡proof
were¡¡given¡¡that¡¡perpendiculars¡¡to¡¡the¡¡same¡¡line¡¡are¡¡parallel£»¡¡it¡¡might
be¡¡supposed¡¡that¡¡lines¡¡thus¡¡perpendicular¡¡were¡¡the¡¡proper¡¡subject¡¡of
the¡¡demonstration¡¡because¡¡being¡¡parallel¡¡is¡¡true¡¡of¡¡every¡¡instance
of¡¡them¡£¡¡But¡¡it¡¡is¡¡not¡¡so£»¡¡for¡¡the¡¡parallelism¡¡depends¡¡not¡¡on¡¡these
angles¡¡being¡¡equal¡¡to¡¡one¡¡another¡¡because¡¡each¡¡is¡¡a¡¡right¡¡angle£»¡¡but
simply¡¡on¡¡their¡¡being¡¡equal¡¡to¡¡one¡¡another¡£¡¡An¡¡example¡¡of¡¡£¨1£©¡¡would¡¡be
as¡¡follows£º¡¡if¡¡isosceles¡¡were¡¡the¡¡only¡¡triangle£»¡¡it¡¡would¡¡be¡¡thought
to¡¡have¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles¡¡qua¡¡isosceles¡£¡¡An
instance¡¡of¡¡£¨2£©¡¡would¡¡be¡¡the¡¡law¡¡that¡¡proportionals¡¡alternate¡£
Alternation¡¡used¡¡to¡¡be¡¡demonstrated¡¡separately¡¡of¡¡numbers£»¡¡lines£»
solids£»¡¡and¡¡durations£»¡¡though¡¡it¡¡could¡¡have¡¡been¡¡proved¡¡of¡¡them¡¡all¡¡by
a¡¡single¡¡demonstration¡£¡¡Because¡¡there¡¡was¡¡no¡¡single¡¡name¡¡to¡¡denote
that¡¡in¡¡which¡¡numbers£»¡¡lengths£»¡¡durations£»¡¡and¡¡solids¡¡are¡¡identical£»
and¡¡because¡¡they¡¡differed¡¡specifically¡¡from¡¡one¡¡another£»¡¡this¡¡property
was¡¡proved¡¡of¡¡each¡¡of¡¡them¡¡separately¡£¡¡To¡day£»¡¡however£»¡¡the¡¡proof¡¡is
commensurately¡¡universal£»¡¡for¡¡they¡¡do¡¡not¡¡possess¡¡this¡¡attribute¡¡qua
lines¡¡or¡¡qua¡¡numbers£»¡¡but¡¡qua¡¡manifesting¡¡this¡¡generic¡¡character¡¡which
they¡¡are¡¡postulated¡¡as¡¡possessing¡¡universally¡£¡¡Hence£»¡¡even¡¡if¡¡one
prove¡¡of¡¡each¡¡kind¡¡of¡¡triangle¡¡that¡¡its¡¡angles¡¡are¡¡equal¡¡to¡¡two
right¡¡angles£»¡¡whether¡¡by¡¡means¡¡of¡¡the¡¡same¡¡or¡¡different¡¡proofs£»¡¡still£»
as¡¡long¡¡as¡¡one¡¡treats¡¡separately¡¡equilateral£»¡¡scalene£»¡¡and
isosceles£»¡¡one¡¡does¡¡not¡¡yet¡¡know£»¡¡except¡¡sophistically£»¡¡that
triangle¡¡has¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡nor¡¡does¡¡one¡¡yet
know¡¡that¡¡triangle¡¡has¡¡this¡¡property¡¡commensurately¡¡and¡¡universally£»
even¡¡if¡¡there¡¡is¡¡no¡¡other¡¡species¡¡of¡¡triangle¡¡but¡¡these¡£¡¡For¡¡one
does¡¡not¡¡know¡¡that¡¡triangle¡¡as¡¡such¡¡has¡¡this¡¡property£»¡¡nor¡¡even¡¡that
'all'¡¡triangles¡¡have¡¡it¡unless¡¡'all'¡¡means¡¡'each¡¡taken¡¡singly'£º¡¡if
'all'¡¡means¡¡'as¡¡a¡¡whole¡¡class'£»¡¡then£»¡¡though¡¡there¡¡be¡¡none¡¡in¡¡which
one¡¡does¡¡not¡¡recognize¡¡this¡¡property£»¡¡one¡¡does¡¡not¡¡know¡¡it¡¡of¡¡'all
triangles'¡£
¡¡¡¡When£»¡¡then£»¡¡does¡¡our¡¡knowledge¡¡fail¡¡of¡¡commensurate¡¡universality£»
and¡¡when¡¡it¡¡is¡¡unqualified¡¡knowledge£¿¡¡If¡¡triangle¡¡be¡¡identical¡¡in
essence¡¡with¡¡equilateral£»¡¡i¡£e¡£¡¡with¡¡each¡¡or¡¡all¡¡equilaterals£»¡¡then
clearly¡¡we¡¡have¡¡unqualified¡¡knowledge£º¡¡if¡¡on¡¡the¡¡other¡¡hand¡¡it¡¡be¡¡not£»
and¡¡the¡¡attribute¡¡belongs¡¡to¡¡equilateral¡¡qua¡¡triangle£»¡¡then¡¡our
knowledge¡¡fails¡¡of¡¡commensurate¡¡universality¡£¡¡'But'£»¡¡it¡¡will¡¡be¡¡asked£»
'does¡¡this¡¡attribute¡¡belong¡¡to¡¡the¡¡subject¡¡of¡¡which¡¡it¡¡has¡¡been
demonstrated¡¡qua¡¡triangle¡¡or¡¡qua¡¡isosceles£¿¡¡What¡¡is¡¡the¡¡point¡¡at¡¡which
the¡¡subject¡£¡¡to¡¡which¡¡it¡¡belongs¡¡is¡¡primary£¿¡¡£¨i¡£e¡£¡¡to¡¡what¡¡subject¡¡can
it¡¡be¡¡demonstrated¡¡as¡¡belonging¡¡commensurately¡¡and¡¡universally£¿£©'
Clearly¡¡this¡¡point¡¡is¡¡the¡¡first¡¡term¡¡in¡¡which¡¡it¡¡is¡¡found¡¡to¡¡inhere¡¡as
the¡¡elimination¡¡of¡¡inferior¡¡differentiae¡¡proceeds¡£¡¡Thus¡¡the¡¡angles
of¡¡a¡¡brazen¡¡isosceles¡¡triangle¡¡are¡¡equal¡¡to¡¡two¡¡right¡¡angles£º¡¡but
eliminate¡¡brazen¡¡and¡¡isosceles¡¡and¡¡the¡¡attribute¡¡remains¡£¡¡'But'¡you
may¡¡say¡'eliminate¡¡figure¡¡or¡¡limit£»¡¡and¡¡the¡¡attribute¡¡vanishes¡£'¡¡True£»
but¡¡figure¡¡and¡¡limit¡¡are¡¡not¡¡the¡¡first¡¡differentiae¡¡whose
elimination¡¡destroys¡¡the¡¡attribute¡£¡¡'Then¡¡what¡¡is¡¡the¡¡first£¿'¡¡If¡¡it¡¡is
triangle£»¡¡it¡¡will¡¡be¡¡in¡¡virtue¡¡of¡¡triangle¡¡that¡¡the¡¡attribute
belongs¡¡to¡¡all¡¡the¡¡other¡¡subjects¡¡of¡¡which¡¡it¡¡is¡¡predicable£»¡¡and
triangle¡¡is¡¡the¡¡subject¡¡to¡¡which¡¡it¡¡can¡¡be¡¡demonstrated¡¡as¡¡belonging
commensurately¡¡and¡¡universally¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6
¡¡¡¡Demonstrative¡¡knowledge¡¡must¡¡rest¡¡on¡¡necessary¡¡basic¡¡truths£»¡¡for¡¡the
object¡¡of¡¡scientific¡¡knowledge¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is¡£¡¡Now
attributes¡¡attaching¡¡essentially¡¡to¡¡their¡¡subjects¡¡attach
necessarily¡¡to¡¡them£º¡¡for¡¡essential¡¡attributes¡¡are¡¡either¡¡elements¡¡in
the¡¡essential¡¡nature¡¡of¡¡their¡¡subjects£»¡¡or¡¡contain¡¡their¡¡subjects¡¡as
elements¡¡in¡¡their¡¡own¡¡essential¡¡nature¡£¡¡£¨The¡¡pairs¡¡of¡¡opposites
which¡¡the¡¡latter¡¡class¡¡includes¡¡are¡¡necessary¡¡because¡¡one¡¡member¡¡or
the¡¡other¡¡necessarily¡¡inheres¡££©¡¡It¡¡follows¡¡from¡¡this¡¡that¡¡premisses¡¡of
the¡¡demonstrative¡¡syllogism¡¡must¡¡be¡¡connexions¡¡essential¡¡in¡¡the
sense¡¡explained£º¡¡for¡¡all¡¡attributes¡¡must¡¡inhere¡¡essentially¡¡or¡¡else¡¡be
accidental£»¡¡and¡¡accidental¡¡attributes¡¡are¡¡not¡¡necessary¡¡to¡¡their
subjects¡£
¡¡¡¡We¡¡must¡¡either¡¡state¡¡the¡¡case¡¡thus£»¡¡or¡¡else¡¡premise¡¡that¡¡the
conclusion¡¡of¡¡demonstration¡¡is¡¡necessary¡¡and¡¡that¡¡a¡¡demonstrated
conclusion¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is£»¡¡and¡¡then¡¡infer¡¡that¡¡the
conclusion¡¡must¡¡be¡¡developed¡¡from¡¡necessary¡¡premisses¡£¡¡For¡¡though
you¡¡may¡¡reason¡¡from¡¡true¡¡premisses¡¡without¡¡demonstrating£»¡¡yet¡¡if
your¡¡premisses¡¡are¡¡necessary¡¡you¡¡will¡¡assuredly¡¡demonstrate¡in¡¡such
necessity¡¡you¡¡have¡¡at¡¡once¡¡a¡¡distinctive¡¡character¡¡of¡¡demonstration¡£
That¡¡demonstration¡¡proceeds¡¡from¡¡necessary¡¡premisses¡¡is¡¡also¡¡indicated
by¡¡the¡¡fact¡¡that¡¡the¡¡objection¡¡we¡¡raise¡¡against¡¡a¡¡professed
demonstration¡¡is¡¡that¡¡a¡¡premiss¡¡of¡¡it¡¡is¡¡not¡¡a¡¡necessary¡¡truth¡whether
we¡¡think¡¡it¡¡altogether¡¡devoid¡¡of¡¡necessity£»¡¡or¡¡at¡¡any¡¡rate¡¡so¡¡far¡¡as
our¡¡opponent's¡¡previous¡¡argument¡¡goes¡£¡¡This¡¡shows¡¡how¡¡naive¡¡it¡¡is¡¡to
suppose¡¡one's¡¡basic¡¡truths¡¡rightly¡¡chosen¡¡if¡¡one¡¡starts¡¡with¡¡a
proposition¡¡which¡¡is¡¡£¨1£©¡¡popularly¡¡accepted¡¡and¡¡£¨2£©¡¡true£»¡¡such¡¡as
the¡¡sophists'¡¡assumption¡¡that¡¡to¡¡know¡¡is¡¡the¡¡same¡¡as¡¡to¡¡possess
knowledge¡£¡¡For¡¡£¨1£©¡¡popular¡¡acceptance¡¡or¡¡rejection¡¡is¡¡no¡¡criterion
of¡¡a¡¡basic¡¡truth£»¡¡which¡¡can¡¡only¡¡be¡¡the¡¡primary¡¡law¡¡of¡¡the¡¡genus
constituting¡¡the¡¡subject¡¡matter¡¡of¡¡the¡¡demonstration£»¡¡and¡¡£¨2£©¡¡not
all¡¡truth¡¡is¡¡'appropriate'¡£
¡¡¡¡A¡¡further¡¡proof¡¡that¡¡the¡¡conclusion¡¡must¡¡be¡¡the¡¡development¡¡of
necessary¡¡premisses¡¡is¡¡as¡¡follows¡£¡¡Where¡¡demonstration¡¡is¡¡possible£»
one¡¡who¡¡can¡¡give¡¡no¡¡accou
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü