¡¶posterior analytics¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

posterior analytics- µÚ3²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡



consequentially¡¡connected¡¡with¡¡their¡¡subjects¡£¡¡For¡¡it¡¡is¡¡impossible



for¡¡them¡¡not¡¡to¡¡inhere¡¡in¡¡their¡¡subjects¡¡either¡¡simply¡¡or¡¡in¡¡the



qualified¡¡sense¡¡that¡¡one¡¡or¡¡other¡¡of¡¡a¡¡pair¡¡of¡¡opposites¡¡must¡¡inhere



in¡¡the¡¡subject£»¡¡e¡£g¡£¡¡in¡¡line¡¡must¡¡be¡¡either¡¡straightness¡¡or¡¡curvature£»



in¡¡number¡¡either¡¡oddness¡¡or¡¡evenness¡£¡¡For¡¡within¡¡a¡¡single¡¡identical



genus¡¡the¡¡contrary¡¡of¡¡a¡¡given¡¡attribute¡¡is¡¡either¡¡its¡¡privative¡¡or¡¡its



contradictory£»¡¡e¡£g¡£¡¡within¡¡number¡¡what¡¡is¡¡not¡¡odd¡¡is¡¡even£»¡¡inasmuch¡¡as



within¡¡this¡¡sphere¡¡even¡¡is¡¡a¡¡necessary¡¡consequent¡¡of¡¡not¡­odd¡£¡¡So£»



since¡¡any¡¡given¡¡predicate¡¡must¡¡be¡¡either¡¡affirmed¡¡or¡¡denied¡¡of¡¡any



subject£»¡¡essential¡¡attributes¡¡must¡¡inhere¡¡in¡¡their¡¡subjects¡¡of



necessity¡£



¡¡¡¡Thus£»¡¡then£»¡¡we¡¡have¡¡established¡¡the¡¡distinction¡¡between¡¡the



attribute¡¡which¡¡is¡¡'true¡¡in¡¡every¡¡instance'¡¡and¡¡the¡¡'essential'



attribute¡£



¡¡¡¡I¡¡term¡¡'commensurately¡¡universal'¡¡an¡¡attribute¡¡which¡¡belongs¡¡to



every¡¡instance¡¡of¡¡its¡¡subject£»¡¡and¡¡to¡¡every¡¡instance¡¡essentially¡¡and



as¡¡such£»¡¡from¡¡which¡¡it¡¡clearly¡¡follows¡¡that¡¡all¡¡commensurate



universals¡¡inhere¡¡necessarily¡¡in¡¡their¡¡subjects¡£¡¡The¡¡essential



attribute£»¡¡and¡¡the¡¡attribute¡¡that¡¡belongs¡¡to¡¡its¡¡subject¡¡as¡¡such£»



are¡¡identical¡£¡¡E¡£g¡£¡¡point¡¡and¡¡straight¡¡belong¡¡to¡¡line¡¡essentially£»¡¡for



they¡¡belong¡¡to¡¡line¡¡as¡¡such£»¡¡and¡¡triangle¡¡as¡¡such¡¡has¡¡two¡¡right



angles£»¡¡for¡¡it¡¡is¡¡essentially¡¡equal¡¡to¡¡two¡¡right¡¡angles¡£



¡¡¡¡An¡¡attribute¡¡belongs¡¡commensurately¡¡and¡¡universally¡¡to¡¡a¡¡subject



when¡¡it¡¡can¡¡be¡¡shown¡¡to¡¡belong¡¡to¡¡any¡¡random¡¡instance¡¡of¡¡that



subject¡¡and¡¡when¡¡the¡¡subject¡¡is¡¡the¡¡first¡¡thing¡¡to¡¡which¡¡it¡¡can¡¡be



shown¡¡to¡¡belong¡£¡¡Thus£»¡¡e¡£g¡£¡¡£¨1£©¡¡the¡¡equality¡¡of¡¡its¡¡angles¡¡to¡¡two



right¡¡angles¡¡is¡¡not¡¡a¡¡commensurately¡¡universal¡¡attribute¡¡of¡¡figure¡£



For¡¡though¡¡it¡¡is¡¡possible¡¡to¡¡show¡¡that¡¡a¡¡figure¡¡has¡¡its¡¡angles¡¡equal



to¡¡two¡¡right¡¡angles£»¡¡this¡¡attribute¡¡cannot¡¡be¡¡demonstrated¡¡of¡¡any



figure¡¡selected¡¡at¡¡haphazard£»¡¡nor¡¡in¡¡demonstrating¡¡does¡¡one¡¡take¡¡a



figure¡¡at¡¡random¡­a¡¡square¡¡is¡¡a¡¡figure¡¡but¡¡its¡¡angles¡¡are¡¡not¡¡equal



to¡¡two¡¡right¡¡angles¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡any¡¡isosceles¡¡triangle¡¡has¡¡its



angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡yet¡¡isosceles¡¡triangle¡¡is¡¡not¡¡the



primary¡¡subject¡¡of¡¡this¡¡attribute¡¡but¡¡triangle¡¡is¡¡prior¡£¡¡So¡¡whatever



can¡¡be¡¡shown¡¡to¡¡have¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡or¡¡to



possess¡¡any¡¡other¡¡attribute£»¡¡in¡¡any¡¡random¡¡instance¡¡of¡¡itself¡¡and



primarily¡­that¡¡is¡¡the¡¡first¡¡subject¡¡to¡¡which¡¡the¡¡predicate¡¡in¡¡question



belongs¡¡commensurately¡¡and¡¡universally£»¡¡and¡¡the¡¡demonstration£»¡¡in



the¡¡essential¡¡sense£»¡¡of¡¡any¡¡predicate¡¡is¡¡the¡¡proof¡¡of¡¡it¡¡as



belonging¡¡to¡¡this¡¡first¡¡subject¡¡commensurately¡¡and¡¡universally£º



while¡¡the¡¡proof¡¡of¡¡it¡¡as¡¡belonging¡¡to¡¡the¡¡other¡¡subjects¡¡to¡¡which¡¡it



attaches¡¡is¡¡demonstration¡¡only¡¡in¡¡a¡¡secondary¡¡and¡¡unessential¡¡sense¡£



Nor¡¡again¡¡£¨2£©¡¡is¡¡equality¡¡to¡¡two¡¡right¡¡angles¡¡a¡¡commensurately



universal¡¡attribute¡¡of¡¡isosceles£»¡¡it¡¡is¡¡of¡¡wider¡¡application¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5







¡¡¡¡We¡¡must¡¡not¡¡fail¡¡to¡¡observe¡¡that¡¡we¡¡often¡¡fall¡¡into¡¡error¡¡because



our¡¡conclusion¡¡is¡¡not¡¡in¡¡fact¡¡primary¡¡and¡¡commensurately¡¡universal



in¡¡the¡¡sense¡¡in¡¡which¡¡we¡¡think¡¡we¡¡prove¡¡it¡¡so¡£¡¡We¡¡make¡¡this¡¡mistake



£¨1£©¡¡when¡¡the¡¡subject¡¡is¡¡an¡¡individual¡¡or¡¡individuals¡¡above¡¡which¡¡there



is¡¡no¡¡universal¡¡to¡¡be¡¡found£º¡¡£¨2£©¡¡when¡¡the¡¡subjects¡¡belong¡¡to¡¡different



species¡¡and¡¡there¡¡is¡¡a¡¡higher¡¡universal£»¡¡but¡¡it¡¡has¡¡no¡¡name£º¡¡£¨3£©



when¡¡the¡¡subject¡¡which¡¡the¡¡demonstrator¡¡takes¡¡as¡¡a¡¡whole¡¡is¡¡really



only¡¡a¡¡part¡¡of¡¡a¡¡larger¡¡whole£»¡¡for¡¡then¡¡the¡¡demonstration¡¡will¡¡be¡¡true



of¡¡the¡¡individual¡¡instances¡¡within¡¡the¡¡part¡¡and¡¡will¡¡hold¡¡in¡¡every



instance¡¡of¡¡it£»¡¡yet¡¡the¡¡demonstration¡¡will¡¡not¡¡be¡¡true¡¡of¡¡this¡¡subject



primarily¡¡and¡¡commensurately¡¡and¡¡universally¡£¡¡When¡¡a¡¡demonstration



is¡¡true¡¡of¡¡a¡¡subject¡¡primarily¡¡and¡¡commensurately¡¡and¡¡universally£»



that¡¡is¡¡to¡¡be¡¡taken¡¡to¡¡mean¡¡that¡¡it¡¡is¡¡true¡¡of¡¡a¡¡given¡¡subject



primarily¡¡and¡¡as¡¡such¡£¡¡Case¡¡£¨3£©¡¡may¡¡be¡¡thus¡¡exemplified¡£¡¡If¡¡a¡¡proof



were¡¡given¡¡that¡¡perpendiculars¡¡to¡¡the¡¡same¡¡line¡¡are¡¡parallel£»¡¡it¡¡might



be¡¡supposed¡¡that¡¡lines¡¡thus¡¡perpendicular¡¡were¡¡the¡¡proper¡¡subject¡¡of



the¡¡demonstration¡¡because¡¡being¡¡parallel¡¡is¡¡true¡¡of¡¡every¡¡instance



of¡¡them¡£¡¡But¡¡it¡¡is¡¡not¡¡so£»¡¡for¡¡the¡¡parallelism¡¡depends¡¡not¡¡on¡¡these



angles¡¡being¡¡equal¡¡to¡¡one¡¡another¡¡because¡¡each¡¡is¡¡a¡¡right¡¡angle£»¡¡but



simply¡¡on¡¡their¡¡being¡¡equal¡¡to¡¡one¡¡another¡£¡¡An¡¡example¡¡of¡¡£¨1£©¡¡would¡¡be



as¡¡follows£º¡¡if¡¡isosceles¡¡were¡¡the¡¡only¡¡triangle£»¡¡it¡¡would¡¡be¡¡thought



to¡¡have¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles¡¡qua¡¡isosceles¡£¡¡An



instance¡¡of¡¡£¨2£©¡¡would¡¡be¡¡the¡¡law¡¡that¡¡proportionals¡¡alternate¡£



Alternation¡¡used¡¡to¡¡be¡¡demonstrated¡¡separately¡¡of¡¡numbers£»¡¡lines£»



solids£»¡¡and¡¡durations£»¡¡though¡¡it¡¡could¡¡have¡¡been¡¡proved¡¡of¡¡them¡¡all¡¡by



a¡¡single¡¡demonstration¡£¡¡Because¡¡there¡¡was¡¡no¡¡single¡¡name¡¡to¡¡denote



that¡¡in¡¡which¡¡numbers£»¡¡lengths£»¡¡durations£»¡¡and¡¡solids¡¡are¡¡identical£»



and¡¡because¡¡they¡¡differed¡¡specifically¡¡from¡¡one¡¡another£»¡¡this¡¡property



was¡¡proved¡¡of¡¡each¡¡of¡¡them¡¡separately¡£¡¡To¡­day£»¡¡however£»¡¡the¡¡proof¡¡is



commensurately¡¡universal£»¡¡for¡¡they¡¡do¡¡not¡¡possess¡¡this¡¡attribute¡¡qua



lines¡¡or¡¡qua¡¡numbers£»¡¡but¡¡qua¡¡manifesting¡¡this¡¡generic¡¡character¡¡which



they¡¡are¡¡postulated¡¡as¡¡possessing¡¡universally¡£¡¡Hence£»¡¡even¡¡if¡¡one



prove¡¡of¡¡each¡¡kind¡¡of¡¡triangle¡¡that¡¡its¡¡angles¡¡are¡¡equal¡¡to¡¡two



right¡¡angles£»¡¡whether¡¡by¡¡means¡¡of¡¡the¡¡same¡¡or¡¡different¡¡proofs£»¡¡still£»



as¡¡long¡¡as¡¡one¡¡treats¡¡separately¡¡equilateral£»¡¡scalene£»¡¡and



isosceles£»¡¡one¡¡does¡¡not¡¡yet¡¡know£»¡¡except¡¡sophistically£»¡¡that



triangle¡¡has¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡nor¡¡does¡¡one¡¡yet



know¡¡that¡¡triangle¡¡has¡¡this¡¡property¡¡commensurately¡¡and¡¡universally£»



even¡¡if¡¡there¡¡is¡¡no¡¡other¡¡species¡¡of¡¡triangle¡¡but¡¡these¡£¡¡For¡¡one



does¡¡not¡¡know¡¡that¡¡triangle¡¡as¡¡such¡¡has¡¡this¡¡property£»¡¡nor¡¡even¡¡that



'all'¡¡triangles¡¡have¡¡it¡­unless¡¡'all'¡¡means¡¡'each¡¡taken¡¡singly'£º¡¡if



'all'¡¡means¡¡'as¡¡a¡¡whole¡¡class'£»¡¡then£»¡¡though¡¡there¡¡be¡¡none¡¡in¡¡which



one¡¡does¡¡not¡¡recognize¡¡this¡¡property£»¡¡one¡¡does¡¡not¡¡know¡¡it¡¡of¡¡'all



triangles'¡£



¡¡¡¡When£»¡¡then£»¡¡does¡¡our¡¡knowledge¡¡fail¡¡of¡¡commensurate¡¡universality£»



and¡¡when¡¡it¡¡is¡¡unqualified¡¡knowledge£¿¡¡If¡¡triangle¡¡be¡¡identical¡¡in



essence¡¡with¡¡equilateral£»¡¡i¡£e¡£¡¡with¡¡each¡¡or¡¡all¡¡equilaterals£»¡¡then



clearly¡¡we¡¡have¡¡unqualified¡¡knowledge£º¡¡if¡¡on¡¡the¡¡other¡¡hand¡¡it¡¡be¡¡not£»



and¡¡the¡¡attribute¡¡belongs¡¡to¡¡equilateral¡¡qua¡¡triangle£»¡¡then¡¡our



knowledge¡¡fails¡¡of¡¡commensurate¡¡universality¡£¡¡'But'£»¡¡it¡¡will¡¡be¡¡asked£»



'does¡¡this¡¡attribute¡¡belong¡¡to¡¡the¡¡subject¡¡of¡¡which¡¡it¡¡has¡¡been



demonstrated¡¡qua¡¡triangle¡¡or¡¡qua¡¡isosceles£¿¡¡What¡¡is¡¡the¡¡point¡¡at¡¡which



the¡¡subject¡£¡¡to¡¡which¡¡it¡¡belongs¡¡is¡¡primary£¿¡¡£¨i¡£e¡£¡¡to¡¡what¡¡subject¡¡can



it¡¡be¡¡demonstrated¡¡as¡¡belonging¡¡commensurately¡¡and¡¡universally£¿£©'



Clearly¡¡this¡¡point¡¡is¡¡the¡¡first¡¡term¡¡in¡¡which¡¡it¡¡is¡¡found¡¡to¡¡inhere¡¡as



the¡¡elimination¡¡of¡¡inferior¡¡differentiae¡¡proceeds¡£¡¡Thus¡¡the¡¡angles



of¡¡a¡¡brazen¡¡isosceles¡¡triangle¡¡are¡¡equal¡¡to¡¡two¡¡right¡¡angles£º¡¡but



eliminate¡¡brazen¡¡and¡¡isosceles¡¡and¡¡the¡¡attribute¡¡remains¡£¡¡'But'¡­you



may¡¡say¡­'eliminate¡¡figure¡¡or¡¡limit£»¡¡and¡¡the¡¡attribute¡¡vanishes¡£'¡¡True£»



but¡¡figure¡¡and¡¡limit¡¡are¡¡not¡¡the¡¡first¡¡differentiae¡¡whose



elimination¡¡destroys¡¡the¡¡attribute¡£¡¡'Then¡¡what¡¡is¡¡the¡¡first£¿'¡¡If¡¡it¡¡is



triangle£»¡¡it¡¡will¡¡be¡¡in¡¡virtue¡¡of¡¡triangle¡¡that¡¡the¡¡attribute



belongs¡¡to¡¡all¡¡the¡¡other¡¡subjects¡¡of¡¡which¡¡it¡¡is¡¡predicable£»¡¡and



triangle¡¡is¡¡the¡¡subject¡¡to¡¡which¡¡it¡¡can¡¡be¡¡demonstrated¡¡as¡¡belonging



commensurately¡¡and¡¡universally¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡Demonstrative¡¡knowledge¡¡must¡¡rest¡¡on¡¡necessary¡¡basic¡¡truths£»¡¡for¡¡the



object¡¡of¡¡scientific¡¡knowledge¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is¡£¡¡Now



attributes¡¡attaching¡¡essentially¡¡to¡¡their¡¡subjects¡¡attach



necessarily¡¡to¡¡them£º¡¡for¡¡essential¡¡attributes¡¡are¡¡either¡¡elements¡¡in



the¡¡essential¡¡nature¡¡of¡¡their¡¡subjects£»¡¡or¡¡contain¡¡their¡¡subjects¡¡as



elements¡¡in¡¡their¡¡own¡¡essential¡¡nature¡£¡¡£¨The¡¡pairs¡¡of¡¡opposites



which¡¡the¡¡latter¡¡class¡¡includes¡¡are¡¡necessary¡¡because¡¡one¡¡member¡¡or



the¡¡other¡¡necessarily¡¡inheres¡££©¡¡It¡¡follows¡¡from¡¡this¡¡that¡¡premisses¡¡of



the¡¡demonstrative¡¡syllogism¡¡must¡¡be¡¡connexions¡¡essential¡¡in¡¡the



sense¡¡explained£º¡¡for¡¡all¡¡attributes¡¡must¡¡inhere¡¡essentially¡¡or¡¡else¡¡be



accidental£»¡¡and¡¡accidental¡¡attributes¡¡are¡¡not¡¡necessary¡¡to¡¡their



subjects¡£



¡¡¡¡We¡¡must¡¡either¡¡state¡¡the¡¡case¡¡thus£»¡¡or¡¡else¡¡premise¡¡that¡¡the



conclusion¡¡of¡¡demonstration¡¡is¡¡necessary¡¡and¡¡that¡¡a¡¡demonstrated



conclusion¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is£»¡¡and¡¡then¡¡infer¡¡that¡¡the



conclusion¡¡must¡¡be¡¡developed¡¡from¡¡necessary¡¡premisses¡£¡¡For¡¡though



you¡¡may¡¡reason¡¡from¡¡true¡¡premisses¡¡without¡¡demonstrating£»¡¡yet¡¡if



your¡¡premisses¡¡are¡¡necessary¡¡you¡¡will¡¡assuredly¡¡demonstrate¡­in¡¡such



necessity¡¡you¡¡have¡¡at¡¡once¡¡a¡¡distinctive¡¡character¡¡of¡¡demonstration¡£



That¡¡demonstration¡¡proceeds¡¡from¡¡necessary¡¡premisses¡¡is¡¡also¡¡indicated



by¡¡the¡¡fact¡¡that¡¡the¡¡objection¡¡we¡¡raise¡¡against¡¡a¡¡professed



demonstration¡¡is¡¡that¡¡a¡¡premiss¡¡of¡¡it¡¡is¡¡not¡¡a¡¡necessary¡¡truth¡­whether



we¡¡think¡¡it¡¡altogether¡¡devoid¡¡of¡¡necessity£»¡¡or¡¡at¡¡any¡¡rate¡¡so¡¡far¡¡as



our¡¡opponent's¡¡previous¡¡argument¡¡goes¡£¡¡This¡¡shows¡¡how¡¡naive¡¡it¡¡is¡¡to



suppose¡¡one's¡¡basic¡¡truths¡¡rightly¡¡chosen¡¡if¡¡one¡¡starts¡¡with¡¡a



proposition¡¡which¡¡is¡¡£¨1£©¡¡popularly¡¡accepted¡¡and¡¡£¨2£©¡¡true£»¡¡such¡¡as



the¡¡sophists'¡¡assumption¡¡that¡¡to¡¡know¡¡is¡¡the¡¡same¡¡as¡¡to¡¡possess



knowledge¡£¡¡For¡¡£¨1£©¡¡popular¡¡acceptance¡¡or¡¡rejection¡¡is¡¡no¡¡criterion



of¡¡a¡¡basic¡¡truth£»¡¡which¡¡can¡¡only¡¡be¡¡the¡¡primary¡¡law¡¡of¡¡the¡¡genus



constituting¡¡the¡¡subject¡¡matter¡¡of¡¡the¡¡demonstration£»¡¡and¡¡£¨2£©¡¡not



all¡¡truth¡¡is¡¡'appropriate'¡£



¡¡¡¡A¡¡further¡¡proof¡¡that¡¡the¡¡conclusion¡¡must¡¡be¡¡the¡¡development¡¡of



necessary¡¡premisses¡¡is¡¡as¡¡follows¡£¡¡Where¡¡demonstration¡¡is¡¡possible£»



one¡¡who¡¡can¡¡give¡¡no¡¡accou
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü