twelve£»¡¡which¡¡results¡¡from¡¡the¡¡synthesis¡¡of¡¡seven¡¡and¡¡five¡£¡¡Such
propositions£»¡¡then£»¡¡cannot¡¡be¡¡termed¡¡axioms¡¡£¨for¡¡in¡¡that¡¡case¡¡we
should¡¡have¡¡an¡¡infinity¡¡of¡¡these£©£»¡¡but¡¡numerical¡¡formulae¡£
¡¡¡¡This¡¡transcendental¡¡principle¡¡of¡¡the¡¡mathematics¡¡of¡¡phenomena
greatly¡¡enlarges¡¡our¡¡a¡¡priori¡¡cognition¡£¡¡For¡¡it¡¡is¡¡by¡¡this¡¡principle
alone¡¡that¡¡pure¡¡mathematics¡¡is¡¡rendered¡¡applicable¡¡in¡¡all¡¡its
precision¡¡to¡¡objects¡¡of¡¡experience£»¡¡and¡¡without¡¡it¡¡the¡¡validity¡¡of
this¡¡application¡¡would¡¡not¡¡be¡¡so¡¡self¡evident£»¡¡on¡¡the¡¡contrary£»
contradictions¡¡and¡¡confusions¡¡have¡¡often¡¡arisen¡¡on¡¡this¡¡very¡¡point¡£
Phenomena¡¡are¡¡not¡¡things¡¡in¡¡themselves¡£¡¡Empirical¡¡intuition¡¡is
possible¡¡only¡¡through¡¡pure¡¡intuition¡¡£¨of¡¡space¡¡and¡¡time£©£»
consequently£»¡¡what¡¡geometry¡¡affirms¡¡of¡¡the¡¡latter£»¡¡is¡¡indisputably
valid¡¡of¡¡the¡¡former¡£¡¡All¡¡evasions£»¡¡such¡¡as¡¡the¡¡statement¡¡that
objects¡¡of¡¡sense¡¡do¡¡not¡¡conform¡¡to¡¡the¡¡rules¡¡of¡¡construction¡¡in
space¡¡£¨for¡¡example£»¡¡to¡¡the¡¡rule¡¡of¡¡the¡¡infinite¡¡divisibility¡¡of
lines¡¡or¡¡angles£©£»¡¡must¡¡fall¡¡to¡¡the¡¡ground¡£¡¡For£»¡¡if¡¡these¡¡objections
hold¡¡good£»¡¡we¡¡deny¡¡to¡¡space£»¡¡and¡¡with¡¡it¡¡to¡¡all¡¡mathematics£»¡¡objective
validity£»¡¡and¡¡no¡¡longer¡¡know¡¡wherefore£»¡¡and¡¡how¡¡far£»¡¡mathematics¡¡can
be¡¡applied¡¡to¡¡phenomena¡£¡¡The¡¡synthesis¡¡of¡¡spaces¡¡and¡¡times¡¡as¡¡the
essential¡¡form¡¡of¡¡all¡¡intuition£»¡¡is¡¡that¡¡which¡¡renders¡¡possible¡¡the
apprehension¡¡of¡¡a¡¡phenomenon£»¡¡and¡¡therefore¡¡every¡¡external¡¡experience£»
consequently¡¡all¡¡cognition¡¡of¡¡the¡¡objects¡¡of¡¡experience£»¡¡and
whatever¡¡mathematics¡¡in¡¡its¡¡pure¡¡use¡¡proves¡¡of¡¡the¡¡former£»¡¡must
necessarily¡¡hold¡¡good¡¡of¡¡the¡¡latter¡£¡¡All¡¡objections¡¡are¡¡but¡¡the
chicaneries¡¡of¡¡an¡¡ill¡instructed¡¡reason£»¡¡which¡¡erroneously¡¡thinks¡¡to
liberate¡¡the¡¡objects¡¡of¡¡sense¡¡from¡¡the¡¡formal¡¡conditions¡¡of¡¡our
sensibility£»¡¡and¡¡represents¡¡these£»¡¡although¡¡mere¡¡phenomena£»¡¡as
things¡¡in¡¡themselves£»¡¡presented¡¡as¡¡such¡¡to¡¡our¡¡understanding¡£¡¡But¡¡in
this¡¡case£»¡¡no¡¡a¡¡priori¡¡synthetical¡¡cognition¡¡of¡¡them¡¡could¡¡be
possible£»¡¡consequently¡¡not¡¡through¡¡pure¡¡conceptions¡¡of¡¡space¡¡and¡¡the
science¡¡which¡¡determines¡¡these¡¡conceptions£»¡¡that¡¡is¡¡to¡¡say£»
geometry£»¡¡would¡¡itself¡¡be¡¡impossible¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡£¡¡ANTICIPATIONS¡¡OF¡¡PERCEPTION¡£
¡¡¡¡¡¡¡¡The¡¡principle¡¡of¡¡these¡¡is£º¡¡In¡¡all¡¡phenomena¡¡the¡¡Real£»¡¡that
¡¡¡¡¡¡¡¡¡¡¡¡which¡¡is¡¡an¡¡object¡¡of¡¡sensation£»¡¡has¡¡Intensive¡¡Quantity£»
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡that¡¡is£»¡¡has¡¡a¡¡Degree¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PROOF¡£
¡¡¡¡Perception¡¡is¡¡empirical¡¡consciousness£»¡¡that¡¡is¡¡to¡¡say£»¡¡a
consciousness¡¡which¡¡contains¡¡an¡¡element¡¡of¡¡sensation¡£¡¡Phenomena¡¡as
objects¡¡of¡¡perception¡¡are¡¡not¡¡pure£»¡¡that¡¡is£»¡¡merely¡¡formal¡¡intuitions£»
like¡¡space¡¡and¡¡time£»¡¡for¡¡they¡¡cannot¡¡be¡¡perceived¡¡in¡¡themselves¡£
They¡¡contain£»¡¡then£»¡¡over¡¡and¡¡above¡¡the¡¡intuition£»¡¡the¡¡materials¡¡for¡¡an
object¡¡£¨through¡¡which¡¡is¡¡represented¡¡something¡¡existing¡¡in¡¡space¡¡or
time£©£»¡¡that¡¡is¡¡to¡¡say£»¡¡they¡¡contain¡¡the¡¡real¡¡of¡¡sensation£»¡¡as¡¡a
representation¡¡merely¡¡subjective£»¡¡which¡¡gives¡¡us¡¡merely¡¡the
consciousness¡¡that¡¡the¡¡subject¡¡is¡¡affected£»¡¡and¡¡which¡¡we¡¡refer¡¡to¡¡some
external¡¡object¡£¡¡Now£»¡¡a¡¡gradual¡¡transition¡¡from¡¡empirical
consciousness¡¡to¡¡pure¡¡consciousness¡¡is¡¡possible£»¡¡inasmuch¡¡as¡¡the
real¡¡in¡¡this¡¡consciousness¡¡entirely¡¡vanishes£»¡¡and¡¡there¡¡remains¡¡a
merely¡¡formal¡¡consciousness¡¡£¨a¡¡priori£©¡¡of¡¡the¡¡manifold¡¡in¡¡time¡¡and
space£»¡¡consequently¡¡there¡¡is¡¡possible¡¡a¡¡synthesis¡¡also¡¡of¡¡the
production¡¡of¡¡the¡¡quantity¡¡of¡¡a¡¡sensation¡¡from¡¡its¡¡commencement£»
that¡¡is£»¡¡from¡¡the¡¡pure¡¡intuition¡¡=¡¡0¡¡onwards¡¡up¡¡to¡¡a¡¡certain
quantity¡¡of¡¡the¡¡sensation¡£¡¡Now¡¡as¡¡sensation¡¡in¡¡itself¡¡is¡¡not¡¡an
objective¡¡representation£»¡¡and¡¡in¡¡it¡¡is¡¡to¡¡be¡¡found¡¡neither¡¡the
intuition¡¡of¡¡space¡¡nor¡¡of¡¡time£»¡¡it¡¡cannot¡¡possess¡¡any¡¡extensive
quantity£»¡¡and¡¡yet¡¡there¡¡does¡¡belong¡¡to¡¡it¡¡a¡¡quantity¡¡£¨and¡¡that¡¡by
means¡¡of¡¡its¡¡apprehension£»¡¡in¡¡which¡¡empirical¡¡consciousness¡¡can¡¡within
a¡¡certain¡¡time¡¡rise¡¡from¡¡nothing¡¡=¡¡0¡¡up¡¡to¡¡its¡¡given¡¡amount£©£»
consequently¡¡an¡¡intensive¡¡quantity¡£¡¡And¡¡thus¡¡we¡¡must¡¡ascribe¡¡intensive
quantity£»¡¡that¡¡is£»¡¡a¡¡degree¡¡of¡¡influence¡¡on¡¡sense¡¡to¡¡all¡¡objects¡¡of
perception£»¡¡in¡¡so¡¡far¡¡as¡¡this¡¡perception¡¡contains¡¡sensation¡£
¡¡¡¡All¡¡cognition£»¡¡by¡¡means¡¡of¡¡which¡¡I¡¡am¡¡enabled¡¡to¡¡cognize¡¡and
determine¡¡a¡¡priori¡¡what¡¡belongs¡¡to¡¡empirical¡¡cognition£»¡¡may¡¡be
called¡¡an¡¡anticipation£»¡¡and¡¡without¡¡doubt¡¡this¡¡is¡¡the¡¡sense¡¡in¡¡which
Epicurus¡¡employed¡¡his¡¡expression¡¡prholepsis¡£¡¡But¡¡as¡¡there¡¡is¡¡in
phenomena¡¡something¡¡which¡¡is¡¡never¡¡cognized¡¡a¡¡priori£»¡¡which¡¡on¡¡this
account¡¡constitutes¡¡the¡¡proper¡¡difference¡¡between¡¡pure¡¡and¡¡empirical
cognition£»¡¡that¡¡is¡¡to¡¡say£»¡¡sensation¡¡£¨as¡¡the¡¡matter¡¡of¡¡perception£©£»¡¡it
follows£»¡¡that¡¡sensation¡¡is¡¡just¡¡that¡¡element¡¡in¡¡cognition¡¡which¡¡cannot
be¡¡at¡¡all¡¡anticipated¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡we¡¡might¡¡very¡¡well¡¡term
the¡¡pure¡¡determinations¡¡in¡¡space¡¡and¡¡time£»¡¡as¡¡well¡¡in¡¡regard¡¡to¡¡figure
as¡¡to¡¡quantity£»¡¡anticipations¡¡of¡¡phenomena£»¡¡because¡¡they¡¡represent¡¡a
priori¡¡that¡¡which¡¡may¡¡always¡¡be¡¡given¡¡a¡¡posteriori¡¡in¡¡experience¡£
But¡¡suppose¡¡that¡¡in¡¡every¡¡sensation£»¡¡as¡¡sensation¡¡in¡¡general£»
without¡¡any¡¡particular¡¡sensation¡¡being¡¡thought¡¡of£»¡¡there¡¡existed
something¡¡which¡¡could¡¡be¡¡cognized¡¡a¡¡priori£»¡¡this¡¡would¡¡deserve¡¡to¡¡be
called¡¡anticipation¡¡in¡¡a¡¡special¡¡sense¡¡¡special£»¡¡because¡¡it¡¡may¡¡seem
surprising¡¡to¡¡forestall¡¡experience£»¡¡in¡¡that¡¡which¡¡concerns¡¡the
matter¡¡of¡¡experience£»¡¡and¡¡which¡¡we¡¡can¡¡only¡¡derive¡¡from¡¡itself¡£¡¡Yet
such¡¡really¡¡is¡¡the¡¡case¡¡here¡£
¡¡¡¡Apprehension£»¡¡by¡¡means¡¡of¡¡sensation¡¡alone£»¡¡fills¡¡only¡¡one¡¡moment£»
that¡¡is£»¡¡if¡¡I¡¡do¡¡not¡¡take¡¡into¡¡consideration¡¡a¡¡succession¡¡of¡¡many
sensations¡£¡¡As¡¡that¡¡in¡¡the¡¡phenomenon£»¡¡the¡¡apprehension¡¡of¡¡which¡¡is
not¡¡a¡¡successive¡¡synthesis¡¡advancing¡¡from¡¡parts¡¡to¡¡an¡¡entire
representation£»¡¡sensation¡¡has¡¡therefore¡¡no¡¡extensive¡¡quantity£»¡¡the
want¡¡of¡¡sensation¡¡in¡¡a¡¡moment¡¡of¡¡time¡¡would¡¡represent¡¡it¡¡as¡¡empty£»
consequently¡¡=¡¡O¡£¡¡That¡¡which¡¡in¡¡the¡¡empirical¡¡intuition¡¡corresponds¡¡to
sensation¡¡is¡¡reality¡¡£¨realitas¡¡phaenomenon£©£»¡¡that¡¡which¡¡corresponds¡¡to
the¡¡absence¡¡of¡¡it£»¡¡negation¡¡=¡¡O¡£¡¡Now¡¡every¡¡sensation¡¡is¡¡capable¡¡of¡¡a
diminution£»¡¡so¡¡that¡¡it¡¡can¡¡decrease£»¡¡and¡¡thus¡¡gradually¡¡disappear¡£
Therefore£»¡¡between¡¡reality¡¡in¡¡a¡¡phenomenon¡¡and¡¡negation£»¡¡there
exists¡¡a¡¡continuous¡¡concatenation¡¡of¡¡many¡¡possible¡¡intermediate
sensations£»¡¡the¡¡difference¡¡of¡¡which¡¡from¡¡each¡¡other¡¡is¡¡always
smaller¡¡than¡¡that¡¡between¡¡the¡¡given¡¡sensation¡¡and¡¡zero£»¡¡or¡¡complete
negation¡£¡¡That¡¡is¡¡to¡¡say£»¡¡the¡¡real¡¡in¡¡a¡¡phenomenon¡¡has¡¡always¡¡a
quantity£»¡¡which¡¡however¡¡is¡¡not¡¡discoverable¡¡in¡¡apprehension£»
inasmuch¡¡as¡¡apprehension¡¡take¡¡place¡¡by¡¡means¡¡of¡¡mere¡¡sensation¡¡in
one¡¡instant£»¡¡and¡¡not¡¡by¡¡the¡¡successive¡¡synthesis¡¡of¡¡many¡¡sensations£»
and¡¡therefore¡¡does¡¡not¡¡progress¡¡from¡¡parts¡¡to¡¡the¡¡whole¡£¡¡Consequently£»
it¡¡has¡¡a¡¡quantity£»¡¡but¡¡not¡¡an¡¡extensive¡¡quantity¡£
¡¡¡¡Now¡¡that¡¡quantity¡¡which¡¡is¡¡apprehended¡¡only¡¡as¡¡unity£»¡¡and¡¡in¡¡which
plurality¡¡can¡¡be¡¡represented¡¡only¡¡by¡¡approximation¡¡to¡¡negation¡¡=¡¡O£»
I¡¡term¡¡intensive¡¡quantity¡£¡¡Consequently£»¡¡reality¡¡in¡¡a¡¡phenomenon¡¡has
intensive¡¡quantity£»¡¡that¡¡is£»¡¡a¡¡degree¡£¡¡if¡¡we¡¡consider¡¡this¡¡reality
as¡¡cause¡¡£¨be¡¡it¡¡of¡¡sensation¡¡or¡¡of¡¡another¡¡reality¡¡in¡¡the
phenomenon£»¡¡for¡¡example£»¡¡a¡¡change£©£»¡¡we¡¡call¡¡the¡¡degree¡¡of¡¡reality¡¡in
its¡¡character¡¡of¡¡cause¡¡a¡¡momentum£»¡¡for¡¡example£»¡¡the¡¡momentum¡¡of
weight£»¡¡and¡¡for¡¡this¡¡reason£»¡¡that¡¡the¡¡degree¡¡only¡¡indicates¡¡that
quantity¡¡the¡¡apprehension¡¡of¡¡which¡¡is¡¡not¡¡successive£»¡¡but
instantaneous¡£¡¡This£»¡¡however£»¡¡I¡¡touch¡¡upon¡¡only¡¡in¡¡passing£»¡¡for¡¡with
causality¡¡I¡¡have¡¡at¡¡present¡¡nothing¡¡to¡¡do¡£
¡¡¡¡Accordingly£»¡¡every¡¡sensation£»¡¡consequently¡¡every¡¡reality¡¡in
phenomena£»¡¡however¡¡small¡¡it¡¡may¡¡be£»¡¡has¡¡a¡¡degree£»¡¡that¡¡is£»¡¡an
intensive¡¡quantity£»¡¡which¡¡may¡¡always¡¡be¡¡lessened£»¡¡and¡¡between
reality¡¡and¡¡negation¡¡there¡¡exists¡¡a¡¡continuous¡¡connection¡¡of
possible¡¡realities£»¡¡and¡¡possible¡¡smaller¡¡perceptions¡£¡¡Every¡¡colour¡
for¡¡example£»¡¡red¡¡¡has¡¡a¡¡degree£»¡¡which£»¡¡be¡¡it¡¡ever¡¡so¡¡small£»¡¡is¡¡never
the¡¡smallest£»¡¡and¡¡so¡¡is¡¡it¡¡always¡¡with¡¡heat£»¡¡the¡¡momentum¡¡of¡¡weight£»
etc¡£
¡¡¡¡This¡¡property¡¡of¡¡quantities£»¡¡according¡¡to¡¡which¡¡no¡¡part¡¡of¡¡them¡¡is
the¡¡smallest¡¡possible¡¡£¨no¡¡part¡¡simple£©£»¡¡is¡¡called¡¡their¡¡continuity¡£
Space¡¡and¡¡time¡¡are¡¡quanta¡¡continua£»¡¡because¡¡no¡¡part¡¡of¡¡them¡¡can¡¡be
given£»¡¡without¡¡enclosing¡¡it¡¡within¡¡boundaries¡¡£¨points¡¡and¡¡moments£©£»
consequently£»¡¡this¡¡given¡¡part¡¡is¡¡itself¡¡a¡¡space¡¡or¡¡a¡¡time¡£¡¡Space£»
therefore£»¡¡consists¡¡only¡¡of¡¡spaces£»¡¡and¡¡time¡¡of¡¡times¡£¡¡Points¡¡and
moments¡¡are¡¡only¡¡boundaries£»¡¡that¡¡is£»¡¡the¡¡mere¡¡places¡¡or¡¡positions
of¡¡their¡¡limitation¡£¡¡But¡¡places¡¡always¡¡presuppose¡¡intuitions¡¡which¡¡are
to¡¡limit¡¡or¡¡determine¡¡them£»¡¡and¡¡we¡¡cannot¡¡conceive¡¡either¡¡space¡¡or
time¡¡composed¡¡of¡¡constituent¡¡parts¡¡which¡¡are¡¡given¡¡before¡¡space¡¡or
time¡£¡¡Such¡¡quantities¡¡may¡¡also¡¡be¡¡called¡¡flowing£»¡¡because¡¡synthesis
£¨of¡¡the¡¡productive¡¡imagination£©¡¡in¡¡the¡¡production¡¡of¡¡these
quantities¡¡is¡¡a¡¡progression¡¡in¡¡time£»¡¡the¡¡continuity¡¡of¡¡which¡¡we¡¡are
accustomed¡¡to¡¡indicate¡¡by¡¡the¡¡expression¡¡flowing¡£
¡¡¡¡All¡¡phenomena£»¡¡then£»¡¡are¡¡continuous¡¡quantities£»¡¡in¡¡respect¡¡both¡¡to
intuition¡¡and¡¡mere¡¡perception¡¡£¨sensation£»¡¡and¡¡with¡¡it¡¡reality£©¡£¡¡In¡¡the
former¡¡case¡¡they¡¡are¡¡extensive¡¡quantities£»¡¡in¡¡the¡¡latter£»¡¡intensive¡£
When¡¡the¡¡synthesis¡¡of¡¡the¡¡manifold¡¡of¡¡a¡¡phenomenon¡¡is¡¡interrupted£»
there¡¡results¡¡merely¡¡an¡¡aggregate¡¡of¡¡several¡¡phenomena£»¡¡and¡¡not
properly¡¡a¡¡phenomenon¡¡as¡¡a¡¡quantity£»¡¡which¡¡is¡¡not¡¡produced¡¡by¡¡the¡¡mere
continuation¡¡of¡¡the¡¡productive¡¡synthesis¡¡of¡¡a¡¡certain¡¡kind£»¡¡but¡¡by¡¡the
repetition¡¡of¡¡a¡¡synthesis¡¡always¡¡ceasing¡£¡¡For¡¡example£»¡¡if¡¡I¡¡call
thirteen¡¡dollars¡¡a¡¡sum¡¡or¡¡quantity¡¡of¡¡money£»¡¡I¡¡employ¡¡the¡¡term¡¡quite
correctly£»¡¡inasmuch¡¡as¡¡I¡¡understand¡¡by¡¡thirteen¡¡dollars¡¡the¡¡value¡¡of¡¡a
mark¡¡in¡¡standard¡¡silver£»¡¡which¡¡is£»¡¡to¡¡be¡¡sure£»¡¡a¡¡continuous
quantity£»¡¡in¡¡which¡¡no¡¡part¡¡is¡¡the¡¡smallest£»¡¡but¡¡every¡¡part¡¡might
constitute¡¡a¡¡piece¡¡of¡¡money£»¡¡which¡¡would¡¡contain¡¡material¡¡for¡¡still
smaller¡¡pieces¡£¡¡If£»¡¡however£»¡¡by¡¡the¡¡words¡¡thirteen¡¡dollars¡¡I
understand¡¡so¡¡many¡¡coins¡¡£¨be¡¡their¡¡value¡¡in¡¡silver¡¡what¡¡it¡¡may£©£»¡¡it
would¡¡be¡¡quite¡¡erroneous¡¡to¡¡use¡¡the¡¡expression¡¡a¡¡quantity¡¡of
dollars£»¡¡on¡¡the¡¡contrary£»¡¡I¡¡must¡¡call¡¡them¡¡aggregate£»¡¡that¡¡is£»¡¡a
number¡¡of¡¡coins¡£¡¡And¡¡as¡¡in¡¡every¡¡number¡¡we¡¡must¡¡have¡¡unity¡¡as¡¡the
foundation£»¡¡so¡¡a¡¡phenomenon¡¡taken¡¡as¡¡unity¡¡is¡¡a¡¡quantity£»¡¡and¡¡as
such¡¡always¡¡a¡¡continuous¡¡quantity¡¡£¨q
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü