¡¶the critique of pure reason¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

the critique of pure reason- µÚ36²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡

twelve£»¡¡which¡¡results¡¡from¡¡the¡¡synthesis¡¡of¡¡seven¡¡and¡¡five¡£¡¡Such

propositions£»¡¡then£»¡¡cannot¡¡be¡¡termed¡¡axioms¡¡£¨for¡¡in¡¡that¡¡case¡¡we

should¡¡have¡¡an¡¡infinity¡¡of¡¡these£©£»¡¡but¡¡numerical¡¡formulae¡£

¡¡¡¡This¡¡transcendental¡¡principle¡¡of¡¡the¡¡mathematics¡¡of¡¡phenomena

greatly¡¡enlarges¡¡our¡¡a¡¡priori¡¡cognition¡£¡¡For¡¡it¡¡is¡¡by¡¡this¡¡principle

alone¡¡that¡¡pure¡¡mathematics¡¡is¡¡rendered¡¡applicable¡¡in¡¡all¡¡its

precision¡¡to¡¡objects¡¡of¡¡experience£»¡¡and¡¡without¡¡it¡¡the¡¡validity¡¡of

this¡¡application¡¡would¡¡not¡¡be¡¡so¡¡self¡­evident£»¡¡on¡¡the¡¡contrary£»

contradictions¡¡and¡¡confusions¡¡have¡¡often¡¡arisen¡¡on¡¡this¡¡very¡¡point¡£

Phenomena¡¡are¡¡not¡¡things¡¡in¡¡themselves¡£¡¡Empirical¡¡intuition¡¡is

possible¡¡only¡¡through¡¡pure¡¡intuition¡¡£¨of¡¡space¡¡and¡¡time£©£»

consequently£»¡¡what¡¡geometry¡¡affirms¡¡of¡¡the¡¡latter£»¡¡is¡¡indisputably

valid¡¡of¡¡the¡¡former¡£¡¡All¡¡evasions£»¡¡such¡¡as¡¡the¡¡statement¡¡that

objects¡¡of¡¡sense¡¡do¡¡not¡¡conform¡¡to¡¡the¡¡rules¡¡of¡¡construction¡¡in

space¡¡£¨for¡¡example£»¡¡to¡¡the¡¡rule¡¡of¡¡the¡¡infinite¡¡divisibility¡¡of

lines¡¡or¡¡angles£©£»¡¡must¡¡fall¡¡to¡¡the¡¡ground¡£¡¡For£»¡¡if¡¡these¡¡objections

hold¡¡good£»¡¡we¡¡deny¡¡to¡¡space£»¡¡and¡¡with¡¡it¡¡to¡¡all¡¡mathematics£»¡¡objective

validity£»¡¡and¡¡no¡¡longer¡¡know¡¡wherefore£»¡¡and¡¡how¡¡far£»¡¡mathematics¡¡can

be¡¡applied¡¡to¡¡phenomena¡£¡¡The¡¡synthesis¡¡of¡¡spaces¡¡and¡¡times¡¡as¡¡the

essential¡¡form¡¡of¡¡all¡¡intuition£»¡¡is¡¡that¡¡which¡¡renders¡¡possible¡¡the

apprehension¡¡of¡¡a¡¡phenomenon£»¡¡and¡¡therefore¡¡every¡¡external¡¡experience£»

consequently¡¡all¡¡cognition¡¡of¡¡the¡¡objects¡¡of¡¡experience£»¡¡and

whatever¡¡mathematics¡¡in¡¡its¡¡pure¡¡use¡¡proves¡¡of¡¡the¡¡former£»¡¡must

necessarily¡¡hold¡¡good¡¡of¡¡the¡¡latter¡£¡¡All¡¡objections¡¡are¡¡but¡¡the

chicaneries¡¡of¡¡an¡¡ill¡­instructed¡¡reason£»¡¡which¡¡erroneously¡¡thinks¡¡to

liberate¡¡the¡¡objects¡¡of¡¡sense¡¡from¡¡the¡¡formal¡¡conditions¡¡of¡¡our

sensibility£»¡¡and¡¡represents¡¡these£»¡¡although¡¡mere¡¡phenomena£»¡¡as

things¡¡in¡¡themselves£»¡¡presented¡¡as¡¡such¡¡to¡¡our¡¡understanding¡£¡¡But¡¡in

this¡¡case£»¡¡no¡¡a¡¡priori¡¡synthetical¡¡cognition¡¡of¡¡them¡¡could¡¡be

possible£»¡¡consequently¡¡not¡¡through¡¡pure¡¡conceptions¡¡of¡¡space¡¡and¡¡the

science¡¡which¡¡determines¡¡these¡¡conceptions£»¡¡that¡¡is¡¡to¡¡say£»

geometry£»¡¡would¡¡itself¡¡be¡¡impossible¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡£¡¡ANTICIPATIONS¡¡OF¡¡PERCEPTION¡£



¡¡¡¡¡¡¡¡The¡¡principle¡¡of¡¡these¡¡is£º¡¡In¡¡all¡¡phenomena¡¡the¡¡Real£»¡¡that

¡¡¡¡¡¡¡¡¡¡¡¡which¡¡is¡¡an¡¡object¡¡of¡¡sensation£»¡¡has¡¡Intensive¡¡Quantity£»

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡that¡¡is£»¡¡has¡¡a¡¡Degree¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PROOF¡£



¡¡¡¡Perception¡¡is¡¡empirical¡¡consciousness£»¡¡that¡¡is¡¡to¡¡say£»¡¡a

consciousness¡¡which¡¡contains¡¡an¡¡element¡¡of¡¡sensation¡£¡¡Phenomena¡¡as

objects¡¡of¡¡perception¡¡are¡¡not¡¡pure£»¡¡that¡¡is£»¡¡merely¡¡formal¡¡intuitions£»

like¡¡space¡¡and¡¡time£»¡¡for¡¡they¡¡cannot¡¡be¡¡perceived¡¡in¡¡themselves¡£

They¡¡contain£»¡¡then£»¡¡over¡¡and¡¡above¡¡the¡¡intuition£»¡¡the¡¡materials¡¡for¡¡an

object¡¡£¨through¡¡which¡¡is¡¡represented¡¡something¡¡existing¡¡in¡¡space¡¡or

time£©£»¡¡that¡¡is¡¡to¡¡say£»¡¡they¡¡contain¡¡the¡¡real¡¡of¡¡sensation£»¡¡as¡¡a

representation¡¡merely¡¡subjective£»¡¡which¡¡gives¡¡us¡¡merely¡¡the

consciousness¡¡that¡¡the¡¡subject¡¡is¡¡affected£»¡¡and¡¡which¡¡we¡¡refer¡¡to¡¡some

external¡¡object¡£¡¡Now£»¡¡a¡¡gradual¡¡transition¡¡from¡¡empirical

consciousness¡¡to¡¡pure¡¡consciousness¡¡is¡¡possible£»¡¡inasmuch¡¡as¡¡the

real¡¡in¡¡this¡¡consciousness¡¡entirely¡¡vanishes£»¡¡and¡¡there¡¡remains¡¡a

merely¡¡formal¡¡consciousness¡¡£¨a¡¡priori£©¡¡of¡¡the¡¡manifold¡¡in¡¡time¡¡and

space£»¡¡consequently¡¡there¡¡is¡¡possible¡¡a¡¡synthesis¡¡also¡¡of¡¡the

production¡¡of¡¡the¡¡quantity¡¡of¡¡a¡¡sensation¡¡from¡¡its¡¡commencement£»

that¡¡is£»¡¡from¡¡the¡¡pure¡¡intuition¡¡=¡¡0¡¡onwards¡¡up¡¡to¡¡a¡¡certain

quantity¡¡of¡¡the¡¡sensation¡£¡¡Now¡¡as¡¡sensation¡¡in¡¡itself¡¡is¡¡not¡¡an

objective¡¡representation£»¡¡and¡¡in¡¡it¡¡is¡¡to¡¡be¡¡found¡¡neither¡¡the

intuition¡¡of¡¡space¡¡nor¡¡of¡¡time£»¡¡it¡¡cannot¡¡possess¡¡any¡¡extensive

quantity£»¡¡and¡¡yet¡¡there¡¡does¡¡belong¡¡to¡¡it¡¡a¡¡quantity¡¡£¨and¡¡that¡¡by

means¡¡of¡¡its¡¡apprehension£»¡¡in¡¡which¡¡empirical¡¡consciousness¡¡can¡¡within

a¡¡certain¡¡time¡¡rise¡¡from¡¡nothing¡¡=¡¡0¡¡up¡¡to¡¡its¡¡given¡¡amount£©£»

consequently¡¡an¡¡intensive¡¡quantity¡£¡¡And¡¡thus¡¡we¡¡must¡¡ascribe¡¡intensive

quantity£»¡¡that¡¡is£»¡¡a¡¡degree¡¡of¡¡influence¡¡on¡¡sense¡¡to¡¡all¡¡objects¡¡of

perception£»¡¡in¡¡so¡¡far¡¡as¡¡this¡¡perception¡¡contains¡¡sensation¡£

¡¡¡¡All¡¡cognition£»¡¡by¡¡means¡¡of¡¡which¡¡I¡¡am¡¡enabled¡¡to¡¡cognize¡¡and

determine¡¡a¡¡priori¡¡what¡¡belongs¡¡to¡¡empirical¡¡cognition£»¡¡may¡¡be

called¡¡an¡¡anticipation£»¡¡and¡¡without¡¡doubt¡¡this¡¡is¡¡the¡¡sense¡¡in¡¡which

Epicurus¡¡employed¡¡his¡¡expression¡¡prholepsis¡£¡¡But¡¡as¡¡there¡¡is¡¡in

phenomena¡¡something¡¡which¡¡is¡¡never¡¡cognized¡¡a¡¡priori£»¡¡which¡¡on¡¡this

account¡¡constitutes¡¡the¡¡proper¡¡difference¡¡between¡¡pure¡¡and¡¡empirical

cognition£»¡¡that¡¡is¡¡to¡¡say£»¡¡sensation¡¡£¨as¡¡the¡¡matter¡¡of¡¡perception£©£»¡¡it

follows£»¡¡that¡¡sensation¡¡is¡¡just¡¡that¡¡element¡¡in¡¡cognition¡¡which¡¡cannot

be¡¡at¡¡all¡¡anticipated¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡we¡¡might¡¡very¡¡well¡¡term

the¡¡pure¡¡determinations¡¡in¡¡space¡¡and¡¡time£»¡¡as¡¡well¡¡in¡¡regard¡¡to¡¡figure

as¡¡to¡¡quantity£»¡¡anticipations¡¡of¡¡phenomena£»¡¡because¡¡they¡¡represent¡¡a

priori¡¡that¡¡which¡¡may¡¡always¡¡be¡¡given¡¡a¡¡posteriori¡¡in¡¡experience¡£

But¡¡suppose¡¡that¡¡in¡¡every¡¡sensation£»¡¡as¡¡sensation¡¡in¡¡general£»

without¡¡any¡¡particular¡¡sensation¡¡being¡¡thought¡¡of£»¡¡there¡¡existed

something¡¡which¡¡could¡¡be¡¡cognized¡¡a¡¡priori£»¡¡this¡¡would¡¡deserve¡¡to¡¡be

called¡¡anticipation¡¡in¡¡a¡¡special¡¡sense¡­¡¡special£»¡¡because¡¡it¡¡may¡¡seem

surprising¡¡to¡¡forestall¡¡experience£»¡¡in¡¡that¡¡which¡¡concerns¡¡the

matter¡¡of¡¡experience£»¡¡and¡¡which¡¡we¡¡can¡¡only¡¡derive¡¡from¡¡itself¡£¡¡Yet

such¡¡really¡¡is¡¡the¡¡case¡¡here¡£

¡¡¡¡Apprehension£»¡¡by¡¡means¡¡of¡¡sensation¡¡alone£»¡¡fills¡¡only¡¡one¡¡moment£»

that¡¡is£»¡¡if¡¡I¡¡do¡¡not¡¡take¡¡into¡¡consideration¡¡a¡¡succession¡¡of¡¡many

sensations¡£¡¡As¡¡that¡¡in¡¡the¡¡phenomenon£»¡¡the¡¡apprehension¡¡of¡¡which¡¡is

not¡¡a¡¡successive¡¡synthesis¡¡advancing¡¡from¡¡parts¡¡to¡¡an¡¡entire

representation£»¡¡sensation¡¡has¡¡therefore¡¡no¡¡extensive¡¡quantity£»¡¡the

want¡¡of¡¡sensation¡¡in¡¡a¡¡moment¡¡of¡¡time¡¡would¡¡represent¡¡it¡¡as¡¡empty£»

consequently¡¡=¡¡O¡£¡¡That¡¡which¡¡in¡¡the¡¡empirical¡¡intuition¡¡corresponds¡¡to

sensation¡¡is¡¡reality¡¡£¨realitas¡¡phaenomenon£©£»¡¡that¡¡which¡¡corresponds¡¡to

the¡¡absence¡¡of¡¡it£»¡¡negation¡¡=¡¡O¡£¡¡Now¡¡every¡¡sensation¡¡is¡¡capable¡¡of¡¡a

diminution£»¡¡so¡¡that¡¡it¡¡can¡¡decrease£»¡¡and¡¡thus¡¡gradually¡¡disappear¡£

Therefore£»¡¡between¡¡reality¡¡in¡¡a¡¡phenomenon¡¡and¡¡negation£»¡¡there

exists¡¡a¡¡continuous¡¡concatenation¡¡of¡¡many¡¡possible¡¡intermediate

sensations£»¡¡the¡¡difference¡¡of¡¡which¡¡from¡¡each¡¡other¡¡is¡¡always

smaller¡¡than¡¡that¡¡between¡¡the¡¡given¡¡sensation¡¡and¡¡zero£»¡¡or¡¡complete

negation¡£¡¡That¡¡is¡¡to¡¡say£»¡¡the¡¡real¡¡in¡¡a¡¡phenomenon¡¡has¡¡always¡¡a

quantity£»¡¡which¡¡however¡¡is¡¡not¡¡discoverable¡¡in¡¡apprehension£»

inasmuch¡¡as¡¡apprehension¡¡take¡¡place¡¡by¡¡means¡¡of¡¡mere¡¡sensation¡¡in

one¡¡instant£»¡¡and¡¡not¡¡by¡¡the¡¡successive¡¡synthesis¡¡of¡¡many¡¡sensations£»

and¡¡therefore¡¡does¡¡not¡¡progress¡¡from¡¡parts¡¡to¡¡the¡¡whole¡£¡¡Consequently£»

it¡¡has¡¡a¡¡quantity£»¡¡but¡¡not¡¡an¡¡extensive¡¡quantity¡£

¡¡¡¡Now¡¡that¡¡quantity¡¡which¡¡is¡¡apprehended¡¡only¡¡as¡¡unity£»¡¡and¡¡in¡¡which

plurality¡¡can¡¡be¡¡represented¡¡only¡¡by¡¡approximation¡¡to¡¡negation¡¡=¡¡O£»

I¡¡term¡¡intensive¡¡quantity¡£¡¡Consequently£»¡¡reality¡¡in¡¡a¡¡phenomenon¡¡has

intensive¡¡quantity£»¡¡that¡¡is£»¡¡a¡¡degree¡£¡¡if¡¡we¡¡consider¡¡this¡¡reality

as¡¡cause¡¡£¨be¡¡it¡¡of¡¡sensation¡¡or¡¡of¡¡another¡¡reality¡¡in¡¡the

phenomenon£»¡¡for¡¡example£»¡¡a¡¡change£©£»¡¡we¡¡call¡¡the¡¡degree¡¡of¡¡reality¡¡in

its¡¡character¡¡of¡¡cause¡¡a¡¡momentum£»¡¡for¡¡example£»¡¡the¡¡momentum¡¡of

weight£»¡¡and¡¡for¡¡this¡¡reason£»¡¡that¡¡the¡¡degree¡¡only¡¡indicates¡¡that

quantity¡¡the¡¡apprehension¡¡of¡¡which¡¡is¡¡not¡¡successive£»¡¡but

instantaneous¡£¡¡This£»¡¡however£»¡¡I¡¡touch¡¡upon¡¡only¡¡in¡¡passing£»¡¡for¡¡with

causality¡¡I¡¡have¡¡at¡¡present¡¡nothing¡¡to¡¡do¡£

¡¡¡¡Accordingly£»¡¡every¡¡sensation£»¡¡consequently¡¡every¡¡reality¡¡in

phenomena£»¡¡however¡¡small¡¡it¡¡may¡¡be£»¡¡has¡¡a¡¡degree£»¡¡that¡¡is£»¡¡an

intensive¡¡quantity£»¡¡which¡¡may¡¡always¡¡be¡¡lessened£»¡¡and¡¡between

reality¡¡and¡¡negation¡¡there¡¡exists¡¡a¡¡continuous¡¡connection¡¡of

possible¡¡realities£»¡¡and¡¡possible¡¡smaller¡¡perceptions¡£¡¡Every¡¡colour¡­

for¡¡example£»¡¡red¡­¡¡has¡¡a¡¡degree£»¡¡which£»¡¡be¡¡it¡¡ever¡¡so¡¡small£»¡¡is¡¡never

the¡¡smallest£»¡¡and¡¡so¡¡is¡¡it¡¡always¡¡with¡¡heat£»¡¡the¡¡momentum¡¡of¡¡weight£»

etc¡£

¡¡¡¡This¡¡property¡¡of¡¡quantities£»¡¡according¡¡to¡¡which¡¡no¡¡part¡¡of¡¡them¡¡is

the¡¡smallest¡¡possible¡¡£¨no¡¡part¡¡simple£©£»¡¡is¡¡called¡¡their¡¡continuity¡£

Space¡¡and¡¡time¡¡are¡¡quanta¡¡continua£»¡¡because¡¡no¡¡part¡¡of¡¡them¡¡can¡¡be

given£»¡¡without¡¡enclosing¡¡it¡¡within¡¡boundaries¡¡£¨points¡¡and¡¡moments£©£»

consequently£»¡¡this¡¡given¡¡part¡¡is¡¡itself¡¡a¡¡space¡¡or¡¡a¡¡time¡£¡¡Space£»

therefore£»¡¡consists¡¡only¡¡of¡¡spaces£»¡¡and¡¡time¡¡of¡¡times¡£¡¡Points¡¡and

moments¡¡are¡¡only¡¡boundaries£»¡¡that¡¡is£»¡¡the¡¡mere¡¡places¡¡or¡¡positions

of¡¡their¡¡limitation¡£¡¡But¡¡places¡¡always¡¡presuppose¡¡intuitions¡¡which¡¡are

to¡¡limit¡¡or¡¡determine¡¡them£»¡¡and¡¡we¡¡cannot¡¡conceive¡¡either¡¡space¡¡or

time¡¡composed¡¡of¡¡constituent¡¡parts¡¡which¡¡are¡¡given¡¡before¡¡space¡¡or

time¡£¡¡Such¡¡quantities¡¡may¡¡also¡¡be¡¡called¡¡flowing£»¡¡because¡¡synthesis

£¨of¡¡the¡¡productive¡¡imagination£©¡¡in¡¡the¡¡production¡¡of¡¡these

quantities¡¡is¡¡a¡¡progression¡¡in¡¡time£»¡¡the¡¡continuity¡¡of¡¡which¡¡we¡¡are

accustomed¡¡to¡¡indicate¡¡by¡¡the¡¡expression¡¡flowing¡£

¡¡¡¡All¡¡phenomena£»¡¡then£»¡¡are¡¡continuous¡¡quantities£»¡¡in¡¡respect¡¡both¡¡to

intuition¡¡and¡¡mere¡¡perception¡¡£¨sensation£»¡¡and¡¡with¡¡it¡¡reality£©¡£¡¡In¡¡the

former¡¡case¡¡they¡¡are¡¡extensive¡¡quantities£»¡¡in¡¡the¡¡latter£»¡¡intensive¡£

When¡¡the¡¡synthesis¡¡of¡¡the¡¡manifold¡¡of¡¡a¡¡phenomenon¡¡is¡¡interrupted£»

there¡¡results¡¡merely¡¡an¡¡aggregate¡¡of¡¡several¡¡phenomena£»¡¡and¡¡not

properly¡¡a¡¡phenomenon¡¡as¡¡a¡¡quantity£»¡¡which¡¡is¡¡not¡¡produced¡¡by¡¡the¡¡mere

continuation¡¡of¡¡the¡¡productive¡¡synthesis¡¡of¡¡a¡¡certain¡¡kind£»¡¡but¡¡by¡¡the

repetition¡¡of¡¡a¡¡synthesis¡¡always¡¡ceasing¡£¡¡For¡¡example£»¡¡if¡¡I¡¡call

thirteen¡¡dollars¡¡a¡¡sum¡¡or¡¡quantity¡¡of¡¡money£»¡¡I¡¡employ¡¡the¡¡term¡¡quite

correctly£»¡¡inasmuch¡¡as¡¡I¡¡understand¡¡by¡¡thirteen¡¡dollars¡¡the¡¡value¡¡of¡¡a

mark¡¡in¡¡standard¡¡silver£»¡¡which¡¡is£»¡¡to¡¡be¡¡sure£»¡¡a¡¡continuous

quantity£»¡¡in¡¡which¡¡no¡¡part¡¡is¡¡the¡¡smallest£»¡¡but¡¡every¡¡part¡¡might

constitute¡¡a¡¡piece¡¡of¡¡money£»¡¡which¡¡would¡¡contain¡¡material¡¡for¡¡still

smaller¡¡pieces¡£¡¡If£»¡¡however£»¡¡by¡¡the¡¡words¡¡thirteen¡¡dollars¡¡I

understand¡¡so¡¡many¡¡coins¡¡£¨be¡¡their¡¡value¡¡in¡¡silver¡¡what¡¡it¡¡may£©£»¡¡it

would¡¡be¡¡quite¡¡erroneous¡¡to¡¡use¡¡the¡¡expression¡¡a¡¡quantity¡¡of

dollars£»¡¡on¡¡the¡¡contrary£»¡¡I¡¡must¡¡call¡¡them¡¡aggregate£»¡¡that¡¡is£»¡¡a

number¡¡of¡¡coins¡£¡¡And¡¡as¡¡in¡¡every¡¡number¡¡we¡¡must¡¡have¡¡unity¡¡as¡¡the

foundation£»¡¡so¡¡a¡¡phenomenon¡¡taken¡¡as¡¡unity¡¡is¡¡a¡¡quantity£»¡¡and¡¡as

such¡¡always¡¡a¡¡continuous¡¡quantity¡¡£¨q
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü