think¡¡an¡¡object¡¡by¡¡the¡¡categories£»¡¡and¡¡where¡¡an¡¡object¡¡can¡¡anywhere¡¡be
found¡¡to¡¡cohere¡¡with¡¡them£»¡¡and¡¡thus¡¡the¡¡truth¡¡is¡¡established£»¡¡that¡¡the
categories¡¡are¡¡not¡¡in¡¡themselves¡¡cognitions£»¡¡but¡¡mere¡¡forms¡¡of¡¡thought
for¡¡the¡¡construction¡¡of¡¡cognitions¡¡from¡¡given¡¡intuitions¡£¡¡For¡¡the¡¡same
reason¡¡is¡¡it¡¡true¡¡that¡¡from¡¡categories¡¡alone¡¡no¡¡synthetical
proposition¡¡can¡¡be¡¡made¡£¡¡For¡¡example£º¡¡¡¨In¡¡every¡¡existence¡¡there¡¡is
substance£»¡¨¡¡that¡¡is£»¡¡something¡¡that¡¡can¡¡exist¡¡only¡¡as¡¡a¡¡subject¡¡and
not¡¡as¡¡mere¡¡predicate£»¡¡or£»¡¡¡¨Everything¡¡is¡¡a¡¡quantity¡¨¡¡¡to¡¡construct
propositions¡¡such¡¡as¡¡these£»¡¡we¡¡require¡¡something¡¡to¡¡enable¡¡us¡¡to¡¡go
out¡¡beyond¡¡the¡¡given¡¡conception¡¡and¡¡connect¡¡another¡¡with¡¡it¡£¡¡For¡¡the
same¡¡reason¡¡the¡¡attempt¡¡to¡¡prove¡¡a¡¡synthetical¡¡proposition¡¡by¡¡means¡¡of
mere¡¡conceptions£»¡¡for¡¡example£º¡¡¡¨Everything¡¡that¡¡exists¡¡contingently
has¡¡a¡¡cause£»¡¨¡¡has¡¡never¡¡succeeded¡£¡¡We¡¡could¡¡never¡¡get¡¡further¡¡than
proving¡¡that£»¡¡without¡¡this¡¡relation¡¡to¡¡conceptions£»¡¡we¡¡could¡¡not
conceive¡¡the¡¡existence¡¡of¡¡the¡¡contingent£»¡¡that¡¡is£»¡¡could¡¡not¡¡a
priori¡¡through¡¡the¡¡understanding¡¡cognize¡¡the¡¡existence¡¡of¡¡such¡¡a
thing£»¡¡but¡¡it¡¡does¡¡not¡¡hence¡¡follow¡¡that¡¡this¡¡is¡¡also¡¡the¡¡condition¡¡of
the¡¡possibility¡¡of¡¡the¡¡thing¡¡itself¡¡that¡¡is¡¡said¡¡to¡¡be¡¡contingent¡£¡¡If£»
accordingly£»¡¡we¡¡look¡¡back¡¡to¡¡our¡¡proof¡¡of¡¡the¡¡principle¡¡of
causality£»¡¡we¡¡shall¡¡find¡¡that¡¡we¡¡were¡¡able¡¡to¡¡prove¡¡it¡¡as¡¡valid¡¡only
of¡¡objects¡¡of¡¡possible¡¡experience£»¡¡and£»¡¡indeed£»¡¡only¡¡as¡¡itself¡¡the
principle¡¡of¡¡the¡¡possibility¡¡of¡¡experience£»¡¡Consequently¡¡of¡¡the
cognition¡¡of¡¡an¡¡object¡¡given¡¡in¡¡empirical¡¡intuition£»¡¡and¡¡not¡¡from¡¡mere
conceptions¡£¡¡That£»¡¡however£»¡¡the¡¡proposition£º¡¡¡¨Everything¡¡that¡¡is
contingent¡¡must¡¡have¡¡a¡¡cause£»¡¨¡¡is¡¡evident¡¡to¡¡every¡¡one¡¡merely¡¡from
conceptions£»¡¡is¡¡not¡¡to¡¡be¡¡denied¡£¡¡But¡¡in¡¡this¡¡case¡¡the¡¡conception¡¡of
the¡¡contingent¡¡is¡¡cogitated¡¡as¡¡involving¡¡not¡¡the¡¡category¡¡of
modality¡¡£¨as¡¡that¡¡the¡¡non¡existence¡¡of¡¡which¡¡can¡¡be¡¡conceive¡¡but
that¡¡of¡¡relation¡¡£¨as¡¡that¡¡which¡¡can¡¡exist¡¡only¡¡as¡¡the¡¡consequence¡¡of
something¡¡else£©£»¡¡and¡¡so¡¡it¡¡is¡¡really¡¡an¡¡identical¡¡proposition£º¡¡¡¨That
which¡¡can¡¡exist¡¡only¡¡as¡¡a¡¡consequence£»¡¡has¡¡a¡¡cause¡£¡¨¡¡In¡¡fact£»¡¡when
we¡¡have¡¡to¡¡give¡¡examples¡¡of¡¡contingent¡¡existence£»¡¡we¡¡always¡¡refer¡¡to
changes£»¡¡and¡¡not¡¡merely¡¡to¡¡the¡¡possibility¡¡of¡¡conceiving¡¡the
opposite¡£*¡¡But¡¡change¡¡is¡¡an¡¡event£»¡¡which£»¡¡as¡¡such£»¡¡is¡¡possible¡¡only
through¡¡a¡¡cause£»¡¡and¡¡considered¡¡per¡¡se¡¡its¡¡non¡existence¡¡is
therefore¡¡possible£»¡¡and¡¡we¡¡become¡¡cognizant¡¡of¡¡its¡¡contingency¡¡from
the¡¡fact¡¡that¡¡it¡¡can¡¡exist¡¡only¡¡as¡¡the¡¡effect¡¡of¡¡a¡¡cause¡£¡¡Hence£»¡¡if
a¡¡thing¡¡is¡¡assumed¡¡to¡¡be¡¡contingent£»¡¡it¡¡is¡¡an¡¡analytical¡¡proposition
to¡¡say£»¡¡it¡¡has¡¡a¡¡cause¡£
¡¡¡¡*We¡¡can¡¡easily¡¡conceive¡¡the¡¡non¡existence¡¡of¡¡matter£»¡¡but¡¡the
ancients¡¡did¡¡not¡¡thence¡¡infer¡¡its¡¡contingency¡£¡¡But¡¡even¡¡the
alternation¡¡of¡¡the¡¡existence¡¡and¡¡non¡existence¡¡of¡¡a¡¡given¡¡state¡¡in¡¡a
thing£»¡¡in¡¡which¡¡all¡¡change¡¡consists£»¡¡by¡¡no¡¡means¡¡proves¡¡the
contingency¡¡of¡¡that¡¡state¡¡¡the¡¡ground¡¡of¡¡proof¡¡being¡¡the¡¡reality¡¡of
its¡¡opposite¡£¡¡For¡¡example£»¡¡a¡¡body¡¡is¡¡in¡¡a¡¡state¡¡of¡¡rest¡¡after
motion£»¡¡but¡¡we¡¡cannot¡¡infer¡¡the¡¡contingency¡¡of¡¡the¡¡motion¡¡from¡¡the
fact¡¡that¡¡the¡¡former¡¡is¡¡the¡¡opposite¡¡of¡¡the¡¡latter¡£¡¡For¡¡this
opposite¡¡is¡¡merely¡¡a¡¡logical¡¡and¡¡not¡¡a¡¡real¡¡opposite¡¡to¡¡the¡¡other¡£
If¡¡we¡¡wish¡¡to¡¡demonstrate¡¡the¡¡contingency¡¡of¡¡the¡¡motion£»¡¡what¡¡we¡¡ought
to¡¡prove¡¡is¡¡that£»¡¡instead¡¡of¡¡the¡¡motion¡¡which¡¡took¡¡place¡¡in¡¡the
preceding¡¡point¡¡of¡¡time£»¡¡it¡¡was¡¡possible¡¡for¡¡the¡¡body¡¡to¡¡have¡¡been
then¡¡in¡¡rest£»¡¡not£»¡¡that¡¡it¡¡is¡¡afterwards¡¡in¡¡rest£»¡¡for¡¡in¡¡this¡¡case£»
both¡¡opposites¡¡are¡¡perfectly¡¡consistent¡¡with¡¡each¡¡other¡£
¡¡¡¡But¡¡it¡¡is¡¡still¡¡more¡¡remarkable¡¡that£»¡¡to¡¡understand¡¡the
possibility¡¡of¡¡things¡¡according¡¡to¡¡the¡¡categories¡¡and¡¡thus¡¡to
demonstrate¡¡the¡¡objective¡¡reality¡¡of¡¡the¡¡latter£»¡¡we¡¡require¡¡not¡¡merely
intuitions£»¡¡but¡¡external¡¡intuitions¡£¡¡If£»¡¡for¡¡example£»¡¡we¡¡take¡¡the¡¡pure
conceptions¡¡of¡¡relation£»¡¡we¡¡find¡¡that¡¡£¨1£©¡¡for¡¡the¡¡purpose¡¡of
presenting¡¡to¡¡the¡¡conception¡¡of¡¡substance¡¡something¡¡permanent¡¡in
intuition¡¡corresponding¡¡thereto¡¡and¡¡thus¡¡of¡¡demonstrating¡¡the
objective¡¡reality¡¡of¡¡this¡¡conception£»¡¡we¡¡require¡¡an¡¡intuition¡¡£¨of
matter£©¡¡in¡¡space£»¡¡because¡¡space¡¡alone¡¡is¡¡permanent¡¡and¡¡determines
things¡¡as¡¡such£»¡¡while¡¡time£»¡¡and¡¡with¡¡it¡¡all¡¡that¡¡is¡¡in¡¡the¡¡internal
sense£»¡¡is¡¡in¡¡a¡¡state¡¡of¡¡continual¡¡flow£»¡¡£¨2£©¡¡in¡¡order¡¡to¡¡represent
change¡¡as¡¡the¡¡intuition¡¡corresponding¡¡to¡¡the¡¡conception¡¡of
causality£»¡¡we¡¡require¡¡the¡¡representation¡¡of¡¡motion¡¡as¡¡change¡¡in¡¡space£»
in¡¡fact£»¡¡it¡¡is¡¡through¡¡it¡¡alone¡¡that¡¡changes£»¡¡the¡¡possibility¡¡of¡¡which
no¡¡pure¡¡understanding¡¡can¡¡perceive£»¡¡are¡¡capable¡¡of¡¡being¡¡intuited¡£
Change¡¡is¡¡the¡¡connection¡¡of¡¡determinations¡¡contradictorily¡¡opposed
to¡¡each¡¡other¡¡in¡¡the¡¡existence¡¡of¡¡one¡¡and¡¡the¡¡same¡¡thing¡£¡¡Now£»¡¡how
it¡¡is¡¡possible¡¡that¡¡out¡¡of¡¡a¡¡given¡¡state¡¡one¡¡quite¡¡opposite¡¡to¡¡it¡¡in
the¡¡same¡¡thing¡¡should¡¡follow£»¡¡reason¡¡without¡¡an¡¡example¡¡can¡¡not¡¡only
not¡¡conceive£»¡¡but¡¡cannot¡¡even¡¡make¡¡intelligible¡¡without¡¡intuition£»¡¡and
this¡¡intuition¡¡is¡¡the¡¡motion¡¡of¡¡a¡¡point¡¡in¡¡space£»¡¡the¡¡existence¡¡of
which¡¡in¡¡different¡¡spaces¡¡£¨as¡¡a¡¡consequence¡¡of¡¡opposite
determinations£©¡¡alone¡¡makes¡¡the¡¡intuition¡¡of¡¡change¡¡possible¡£¡¡For£»
in¡¡order¡¡to¡¡make¡¡even¡¡internal¡¡change¡¡cognitable£»¡¡we¡¡require¡¡to
represent¡¡time£»¡¡as¡¡the¡¡form¡¡of¡¡the¡¡internal¡¡sense£»¡¡figuratively¡¡by¡¡a
line£»¡¡and¡¡the¡¡internal¡¡change¡¡by¡¡the¡¡drawing¡¡of¡¡that¡¡line¡¡£¨motion£©£»
and¡¡consequently¡¡are¡¡obliged¡¡to¡¡employ¡¡external¡¡intuition¡¡to¡¡be¡¡able
to¡¡represent¡¡the¡¡successive¡¡existence¡¡of¡¡ourselves¡¡in¡¡different
states¡£¡¡The¡¡proper¡¡ground¡¡of¡¡this¡¡fact¡¡is¡¡that¡¡all¡¡change¡¡to¡¡be
perceived¡¡as¡¡change¡¡presupposes¡¡something¡¡permanent¡¡in¡¡intuition£»
while¡¡in¡¡the¡¡internal¡¡sense¡¡no¡¡permanent¡¡intuition¡¡is¡¡to¡¡be¡¡found¡£
Lastly£»¡¡the¡¡objective¡¡possibility¡¡of¡¡the¡¡category¡¡of¡¡community
cannot¡¡be¡¡conceived¡¡by¡¡mere¡¡reason£»¡¡and¡¡consequently¡¡its¡¡objective
reality¡¡cannot¡¡be¡¡demonstrated¡¡without¡¡an¡¡intuition£»¡¡and¡¡that¡¡external
in¡¡space¡£¡¡For¡¡how¡¡can¡¡we¡¡conceive¡¡the¡¡possibility¡¡of¡¡community£»¡¡that
is£»¡¡when¡¡several¡¡substances¡¡exist£»¡¡that¡¡some¡¡effect¡¡on¡¡the¡¡existence
of¡¡the¡¡one¡¡follows¡¡from¡¡the¡¡existence¡¡of¡¡the¡¡other£»¡¡and
reciprocally£»¡¡and¡¡therefore¡¡that£»¡¡because¡¡something¡¡exists¡¡in¡¡the
latter£»¡¡something¡¡else¡¡must¡¡exist¡¡in¡¡the¡¡former£»¡¡which¡¡could¡¡not¡¡be
understood¡¡from¡¡its¡¡own¡¡existence¡¡alone£¿¡¡For¡¡this¡¡is¡¡the¡¡very
essence¡¡of¡¡community¡¡¡which¡¡is¡¡inconceivable¡¡as¡¡a¡¡property¡¡of¡¡things
which¡¡are¡¡perfectly¡¡isolated¡£¡¡Hence£»¡¡Leibnitz£»¡¡in¡¡attributing¡¡to¡¡the
substances¡¡of¡¡the¡¡world¡¡¡as¡¡cogitated¡¡by¡¡the¡¡understanding¡¡alone¡¡¡a
community£»¡¡required¡¡the¡¡mediating¡¡aid¡¡of¡¡a¡¡divinity£»¡¡for£»¡¡from¡¡their
existence£»¡¡such¡¡a¡¡property¡¡seemed¡¡to¡¡him¡¡with¡¡justice¡¡inconceivable¡£
But¡¡we¡¡can¡¡very¡¡easily¡¡conceive¡¡the¡¡possibility¡¡of¡¡community¡¡£¨of
substances¡¡as¡¡phenomena£©¡¡if¡¡we¡¡represent¡¡them¡¡to¡¡ourselves¡¡as¡¡in
space£»¡¡consequently¡¡in¡¡external¡¡intuition¡£¡¡For¡¡external¡¡intuition
contains¡¡in¡¡itself¡¡a¡¡priori¡¡formal¡¡external¡¡relations£»¡¡as¡¡the
conditions¡¡of¡¡the¡¡possibility¡¡of¡¡the¡¡real¡¡relations¡¡of¡¡action¡¡and
reaction£»¡¡and¡¡therefore¡¡of¡¡the¡¡possibility¡¡of¡¡community¡£¡¡With¡¡the¡¡same
ease¡¡can¡¡it¡¡be¡¡demonstrated£»¡¡that¡¡the¡¡possibility¡¡of¡¡things¡¡as
quantities£»¡¡and¡¡consequently¡¡the¡¡objective¡¡reality¡¡of¡¡the¡¡category
of¡¡quantity£»¡¡can¡¡be¡¡grounded¡¡only¡¡in¡¡external¡¡intuition£»¡¡and¡¡that¡¡by
its¡¡means¡¡alone¡¡is¡¡the¡¡notion¡¡of¡¡quantity¡¡appropriated¡¡by¡¡the¡¡internal
sense¡£¡¡But¡¡I¡¡must¡¡avoid¡¡prolixity£»¡¡and¡¡leave¡¡the¡¡task¡¡of
illustrating¡¡this¡¡by¡¡examples¡¡to¡¡the¡¡reader's¡¡own¡¡reflection¡£
¡¡¡¡The¡¡above¡¡remarks¡¡are¡¡of¡¡the¡¡greatest¡¡importance£»¡¡not¡¡only¡¡for¡¡the
confirmation¡¡of¡¡our¡¡previous¡¡confutation¡¡of¡¡idealism£»¡¡but¡¡still¡¡more
when¡¡the¡¡subject¡¡of¡¡self¡cognition¡¡by¡¡mere¡¡internal¡¡consciousness
and¡¡the¡¡determination¡¡of¡¡our¡¡own¡¡nature¡¡without¡¡the¡¡aid¡¡of¡¡external
empirical¡¡intuitions¡¡is¡¡under¡¡discussion£»¡¡for¡¡the¡¡indication¡¡of¡¡the
grounds¡¡of¡¡the¡¡possibility¡¡of¡¡such¡¡a¡¡cognition¡£
¡¡¡¡The¡¡result¡¡of¡¡the¡¡whole¡¡of¡¡this¡¡part¡¡of¡¡the¡¡analytic¡¡of¡¡principles
is£»¡¡therefore£º¡¡¡¨All¡¡principles¡¡of¡¡the¡¡pure¡¡understanding¡¡are¡¡nothing
more¡¡than¡¡a¡¡priori¡¡principles¡¡of¡¡the¡¡possibility¡¡of¡¡experience£»¡¡and¡¡to
experience¡¡alone¡¡do¡¡all¡¡a¡¡priori¡¡synthetical¡¡propositions¡¡apply¡¡and
relate¡¨£»¡¡indeed£»¡¡their¡¡possibility¡¡itself¡¡rests¡¡entirely¡¡on¡¡this
relation¡£
¡¡¡¡¡¡¡¡CHAPTER¡¡III¡¡Of¡¡the¡¡Ground¡¡of¡¡the¡¡Division¡¡of¡¡all¡¡Objects
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡into¡¡Phenomena¡¡and¡¡Noumena¡£
¡¡¡¡We¡¡have¡¡now¡¡not¡¡only¡¡traversed¡¡the¡¡region¡¡of¡¡the¡¡pure
understanding¡¡and¡¡carefully¡¡surveyed¡¡every¡¡part¡¡of¡¡it£»¡¡but¡¡we¡¡have
also¡¡measured¡¡it£»¡¡and¡¡assigned¡¡to¡¡everything¡¡therein¡¡its¡¡proper¡¡place¡£
But¡¡this¡¡land¡¡is¡¡an¡¡island£»¡¡and¡¡enclosed¡¡by¡¡nature¡¡herself¡¡within
unchangeable¡¡limits¡£¡¡It¡¡is¡¡the¡¡land¡¡of¡¡truth¡¡£¨an¡¡attractive¡¡word£©£»
surrounded¡¡by¡¡a¡¡wide¡¡and¡¡stormy¡¡ocean£»¡¡the¡¡region¡¡of¡¡illusion£»¡¡where
many¡¡a¡¡fog¡bank£»¡¡many¡¡an¡¡iceberg£»¡¡seems¡¡to¡¡the¡¡mariner£»¡¡on¡¡his
voyage¡¡of¡¡discovery£»¡¡a¡¡new¡¡country£»¡¡and£»¡¡while¡¡constantly¡¡deluding¡¡him
with¡¡vain¡¡hopes£»¡¡engages¡¡him¡¡in¡¡dangerous¡¡adventures£»¡¡from¡¡which¡¡he
never¡¡can¡¡desist£»¡¡and¡¡which¡¡yet¡¡he¡¡never¡¡can¡¡bring¡¡to¡¡a¡¡termination¡£
But¡¡before¡¡venturing¡¡upon¡¡this¡¡sea£»¡¡in¡¡order¡¡to¡¡explore¡¡it¡¡in¡¡its
whole¡¡extent£»¡¡and¡¡to¡¡arrive¡¡at¡¡a¡¡certainty¡¡whether¡¡anything¡¡is¡¡to¡¡be
discovered¡¡there£»¡¡it¡¡will¡¡not¡¡be¡¡without¡¡advantage¡¡if¡¡we¡¡cast¡¡our¡¡eyes
upon¡¡the¡¡chart¡¡of¡¡the¡¡land¡¡that¡¡we¡¡are¡¡about¡¡to¡¡leave£»¡¡and¡¡to¡¡ask
ourselves£»¡¡firstly£»¡¡whether¡¡we¡¡cannot¡¡rest¡¡perfectly¡¡contented¡¡with
what¡¡it¡¡contains£»¡¡or¡¡whether¡¡we¡¡must¡¡not¡¡of¡¡necessity¡¡be¡¡contented
with¡¡it£»¡¡if¡¡we¡¡can¡¡find¡¡nowhere¡¡else¡¡a¡¡solid¡¡foundation¡¡to¡¡build¡¡upon£»
and£»¡¡secondly£»¡¡by¡¡what¡¡title¡¡we¡¡possess¡¡this¡¡land¡¡itself£»¡¡and¡¡how¡¡we
hold¡¡it¡¡secure¡¡against¡¡all¡¡hostile¡¡claims£¿¡¡Although£»¡¡in¡¡the¡¡course
of¡¡our¡¡analytic£»¡¡we¡¡have¡¡already¡¡given¡¡sufficient¡¡answers¡¡to¡¡these
questions£»¡¡yet¡¡a¡¡summary¡¡recapitulation¡¡of¡¡these¡¡solutions¡¡may¡¡be
useful¡¡in¡¡strengthening¡¡our¡¡conviction£»¡¡by¡¡uniting¡¡in¡¡one¡¡point¡¡the
momenta¡¡of¡¡the¡¡arguments¡£
¡¡¡¡We¡¡have¡¡seen¡¡that¡¡everything¡¡which¡¡the¡¡understanding¡¡draws¡¡from
itself£»¡¡without¡¡borrowing¡¡from¡¡experience£»¡¡it¡¡nevertheless¡¡possesses
only¡¡for¡¡the¡¡behoof¡¡and¡¡use¡¡of¡¡experience¡£¡¡The¡¡principles¡¡of¡¡the
pure¡¡understanding£»¡¡whether¡¡constitutive¡¡a¡¡priori¡¡£¨as¡¡the¡¡mathematical
pri
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü