¡¶the critique of pure reason¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

the critique of pure reason- µÚ68²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡

no¡¡ground¡¡to¡¡maintain¡¡the¡¡contrary¡¡proposition¡£¡¡The¡¡advantage¡¡is

completely¡¡on¡¡the¡¡side¡¡of¡¡Pneumatism£»¡¡although¡¡this¡¡theory¡¡itself

passes¡¡into¡¡naught£»¡¡in¡¡the¡¡crucible¡¡of¡¡pure¡¡reason¡£

¡¡¡¡Very¡¡different¡¡is¡¡the¡¡case¡¡when¡¡we¡¡apply¡¡reason¡¡to¡¡the¡¡objective

synthesis¡¡of¡¡phenomena¡£¡¡Here£»¡¡certainly£»¡¡reason¡¡establishes£»¡¡with¡¡much

plausibility£»¡¡its¡¡principle¡¡of¡¡unconditioned¡¡unity£»¡¡but¡¡it¡¡very¡¡soon

falls¡¡into¡¡such¡¡contradictions¡¡that¡¡it¡¡is¡¡compelled£»¡¡in¡¡relation¡¡to

cosmology£»¡¡to¡¡renounce¡¡its¡¡pretensions¡£

¡¡¡¡For¡¡here¡¡a¡¡new¡¡phenomenon¡¡of¡¡human¡¡reason¡¡meets¡¡us¡­¡¡a¡¡perfectly

natural¡¡antithetic£»¡¡which¡¡does¡¡not¡¡require¡¡to¡¡be¡¡sought¡¡for¡¡by

subtle¡¡sophistry£»¡¡but¡¡into¡¡which¡¡reason¡¡of¡¡itself¡¡unavoidably¡¡falls¡£

It¡¡is¡¡thereby¡¡preserved£»¡¡to¡¡be¡¡sure£»¡¡from¡¡the¡¡slumber¡¡of¡¡a¡¡fancied

conviction¡­¡¡which¡¡a¡¡merely¡¡one¡­sided¡¡illusion¡¡produces£»¡¡but¡¡it¡¡is¡¡at

the¡¡same¡¡time¡¡compelled£»¡¡either£»¡¡on¡¡the¡¡one¡¡hand£»¡¡to¡¡abandon¡¡itself¡¡to

a¡¡despairing¡¡scepticism£»¡¡or£»¡¡on¡¡the¡¡other£»¡¡to¡¡assume¡¡a¡¡dogmatical

confidence¡¡and¡¡obstinate¡¡persistence¡¡in¡¡certain¡¡assertions£»¡¡without

granting¡¡a¡¡fair¡¡hearing¡¡to¡¡the¡¡other¡¡side¡¡of¡¡the¡¡question¡£¡¡Either¡¡is

the¡¡death¡¡of¡¡a¡¡sound¡¡philosophy£»¡¡although¡¡the¡¡former¡¡might¡¡perhaps

deserve¡¡the¡¡title¡¡of¡¡the¡¡euthanasia¡¡of¡¡pure¡¡reason¡£

¡¡¡¡Before¡¡entering¡¡this¡¡region¡¡of¡¡discord¡¡and¡¡confusion£»¡¡which¡¡the

conflict¡¡of¡¡the¡¡laws¡¡of¡¡pure¡¡reason¡¡£¨antinomy£©¡¡produces£»¡¡we¡¡shall

present¡¡the¡¡reader¡¡with¡¡some¡¡considerations£»¡¡in¡¡explanation¡¡and

justification¡¡of¡¡the¡¡method¡¡we¡¡intend¡¡to¡¡follow¡¡in¡¡our¡¡treatment¡¡of

this¡¡subject¡£¡¡I¡¡term¡¡all¡¡transcendental¡¡ideas£»¡¡in¡¡so¡¡far¡¡as¡¡they

relate¡¡to¡¡the¡¡absolute¡¡totality¡¡in¡¡the¡¡synthesis¡¡of¡¡phenomena£»

cosmical¡¡conceptions£»¡¡partly¡¡on¡¡account¡¡of¡¡this¡¡unconditioned

totality£»¡¡on¡¡which¡¡the¡¡conception¡¡of¡¡the¡¡world¡­whole¡¡is¡¡based¡­¡¡a

conception£»¡¡which¡¡is¡¡itself¡¡an¡¡idea¡­¡¡partly¡¡because¡¡they¡¡relate¡¡solely

to¡¡the¡¡synthesis¡¡of¡¡phenomena¡­¡¡the¡¡empirical¡¡synthesis£»¡¡while£»¡¡on

the¡¡other¡¡hand£»¡¡the¡¡absolute¡¡totality¡¡in¡¡the¡¡synthesis¡¡of¡¡the

conditions¡¡of¡¡all¡¡possible¡¡things¡¡gives¡¡rise¡¡to¡¡an¡¡ideal¡¡of¡¡pure

reason£»¡¡which¡¡is¡¡quite¡¡distinct¡¡from¡¡the¡¡cosmical¡¡conception£»¡¡although

it¡¡stands¡¡in¡¡relation¡¡with¡¡it¡£¡¡Hence£»¡¡as¡¡the¡¡paralogisms¡¡of¡¡pure

reason¡¡laid¡¡the¡¡foundation¡¡for¡¡a¡¡dialectical¡¡psychology£»¡¡the

antinomy¡¡of¡¡pure¡¡reason¡¡will¡¡present¡¡us¡¡with¡¡the¡¡transcendental

principles¡¡of¡¡a¡¡pretended¡¡pure¡¡£¨rational£©¡¡cosmology¡­¡¡not£»¡¡however£»

to¡¡declare¡¡it¡¡valid¡¡and¡¡to¡¡appropriate¡¡it£»¡¡but¡­¡¡as¡¡the¡¡very¡¡term¡¡of

a¡¡conflict¡¡of¡¡reason¡¡sufficiently¡¡indicates£»¡¡to¡¡present¡¡it¡¡as¡¡an

idea¡¡which¡¡cannot¡¡be¡¡reconciled¡¡with¡¡phenomena¡¡and¡¡experience¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡SECTION¡¡I¡£¡¡System¡¡of¡¡Cosmological¡¡Ideas¡£



¡¡¡¡That¡¡We¡¡may¡¡be¡¡able¡¡to¡¡enumerate¡¡with¡¡systematic¡¡precision¡¡these

ideas¡¡according¡¡to¡¡a¡¡principle£»¡¡we¡¡must¡¡remark£»¡¡in¡¡the¡¡first¡¡place£»

that¡¡it¡¡is¡¡from¡¡the¡¡understanding¡¡alone¡¡that¡¡pure¡¡and¡¡transcendental

conceptions¡¡take¡¡their¡¡origin£»¡¡that¡¡the¡¡reason¡¡does¡¡not¡¡properly

give¡¡birth¡¡to¡¡any¡¡conception£»¡¡but¡¡only¡¡frees¡¡the¡¡conception¡¡of¡¡the

understanding¡¡from¡¡the¡¡unavoidable¡¡limitation¡¡of¡¡a¡¡possible

experience£»¡¡and¡¡thus¡¡endeavours¡¡to¡¡raise¡¡it¡¡above¡¡the¡¡empirical£»

though¡¡it¡¡must¡¡still¡¡be¡¡in¡¡connection¡¡with¡¡it¡£¡¡This¡¡happens¡¡from¡¡the

fact¡¡that£»¡¡for¡¡a¡¡given¡¡conditioned£»¡¡reason¡¡demands¡¡absolute¡¡totality

on¡¡the¡¡side¡¡of¡¡the¡¡conditions¡¡£¨to¡¡which¡¡the¡¡understanding¡¡submits

all¡¡phenomena£©£»¡¡and¡¡thus¡¡makes¡¡of¡¡the¡¡category¡¡a¡¡transcendental

idea¡£¡¡This¡¡it¡¡does¡¡that¡¡it¡¡may¡¡be¡¡able¡¡to¡¡give¡¡absolute¡¡completeness

to¡¡the¡¡empirical¡¡synthesis£»¡¡by¡¡continuing¡¡it¡¡to¡¡the¡¡unconditioned

£¨which¡¡is¡¡not¡¡to¡¡be¡¡found¡¡in¡¡experience£»¡¡but¡¡only¡¡in¡¡the¡¡idea£©¡£¡¡Reason

requires¡¡this¡¡according¡¡to¡¡the¡¡principle£º¡¡If¡¡the¡¡conditioned¡¡is

given¡¡the¡¡whole¡¡of¡¡the¡¡conditions£»¡¡and¡¡consequently¡¡the¡¡absolutely

unconditioned£»¡¡is¡¡also¡¡given£»¡¡whereby¡¡alone¡¡the¡¡former¡¡was¡¡possible¡£

First£»¡¡then£»¡¡the¡¡transcendental¡¡ideas¡¡are¡¡properly¡¡nothing¡¡but

categories¡¡elevated¡¡to¡¡the¡¡unconditioned£»¡¡and¡¡they¡¡may¡¡be¡¡arranged

in¡¡a¡¡table¡¡according¡¡to¡¡the¡¡titles¡¡of¡¡the¡¡latter¡£¡¡But£»¡¡secondly£»¡¡all

the¡¡categories¡¡are¡¡not¡¡available¡¡for¡¡this¡¡purpose£»¡¡but¡¡only¡¡those¡¡in

which¡¡the¡¡synthesis¡¡constitutes¡¡a¡¡series¡­¡¡of¡¡conditions¡¡subordinated

to£»¡¡not¡¡co¡­ordinated¡¡with£»¡¡each¡¡other¡£¡¡Absolute¡¡totality¡¡is¡¡required

of¡¡reason¡¡only¡¡in¡¡so¡¡far¡¡as¡¡concerns¡¡the¡¡ascending¡¡series¡¡of¡¡the

conditions¡¡of¡¡a¡¡conditioned£»¡¡not£»¡¡consequently£»¡¡when¡¡the¡¡question

relates¡¡to¡¡the¡¡descending¡¡series¡¡of¡¡consequences£»¡¡or¡¡to¡¡the

aggregate¡¡of¡¡the¡¡co¡­ordinated¡¡conditions¡¡of¡¡these¡¡consequences¡£¡¡For£»

in¡¡relation¡¡to¡¡a¡¡given¡¡conditioned£»¡¡conditions¡¡are¡¡presupposed¡¡and

considered¡¡to¡¡be¡¡given¡¡along¡¡with¡¡it¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡as¡¡the

consequences¡¡do¡¡not¡¡render¡¡possible¡¡their¡¡conditions£»¡¡but¡¡rather

presuppose¡¡them¡­¡¡in¡¡the¡¡consideration¡¡of¡¡the¡¡procession¡¡of

consequences¡¡£¨or¡¡in¡¡the¡¡descent¡¡from¡¡the¡¡given¡¡condition¡¡to¡¡the

conditioned£©£»¡¡we¡¡may¡¡be¡¡quite¡¡unconcerned¡¡whether¡¡the¡¡series¡¡ceases¡¡or

not£»¡¡and¡¡their¡¡totality¡¡is¡¡not¡¡a¡¡necessary¡¡demand¡¡of¡¡reason¡£

¡¡¡¡Thus¡¡we¡¡cogitate¡­¡¡and¡¡necessarily¡­¡¡a¡¡given¡¡time¡¡completely¡¡elapsed

up¡¡to¡¡a¡¡given¡¡moment£»¡¡although¡¡that¡¡time¡¡is¡¡not¡¡determinable¡¡by¡¡us¡£

But¡¡as¡¡regards¡¡time¡¡future£»¡¡which¡¡is¡¡not¡¡the¡¡condition¡¡of¡¡arriving

at¡¡the¡¡present£»¡¡in¡¡order¡¡to¡¡conceive¡¡it£»¡¡it¡¡is¡¡quite¡¡indifferent

whether¡¡we¡¡consider¡¡future¡¡time¡¡as¡¡ceasing¡¡at¡¡some¡¡point£»¡¡or¡¡as

prolonging¡¡itself¡¡to¡¡infinity¡£¡¡Take£»¡¡for¡¡example£»¡¡the¡¡series¡¡m£»¡¡n£»

o£»¡¡in¡¡which¡¡n¡¡is¡¡given¡¡as¡¡conditioned¡¡in¡¡relation¡¡to¡¡m£»¡¡but¡¡at¡¡the

same¡¡time¡¡as¡¡the¡¡condition¡¡of¡¡o£»¡¡and¡¡let¡¡the¡¡series¡¡proceed¡¡upwards

from¡¡the¡¡conditioned¡¡n¡¡to¡¡m¡¡£¨l£»¡¡k£»¡¡i£»¡¡etc¡££©£»¡¡and¡¡also¡¡downwards¡¡from

the¡¡condition¡¡n¡¡to¡¡the¡¡conditioned¡¡o¡¡£¨p£»¡¡q£»¡¡r£»¡¡etc¡££©¡­¡¡I¡¡must

presuppose¡¡the¡¡former¡¡series£»¡¡to¡¡be¡¡able¡¡to¡¡consider¡¡n¡¡as¡¡given£»¡¡and¡¡n

is¡¡according¡¡to¡¡reason¡¡£¨the¡¡totality¡¡of¡¡conditions£©¡¡possible¡¡only¡¡by

means¡¡of¡¡that¡¡series¡£¡¡But¡¡its¡¡possibility¡¡does¡¡not¡¡rest¡¡on¡¡the

following¡¡series¡¡o£»¡¡p£»¡¡q£»¡¡r£»¡¡which¡¡for¡¡this¡¡reason¡¡cannot¡¡be

regarded¡¡as¡¡given£»¡¡but¡¡only¡¡as¡¡capable¡¡of¡¡being¡¡given¡¡£¨dabilis£©¡£

¡¡¡¡I¡¡shall¡¡term¡¡the¡¡synthesis¡¡of¡¡the¡¡series¡¡on¡¡the¡¡side¡¡of¡¡the

conditions¡­¡¡from¡¡that¡¡nearest¡¡to¡¡the¡¡given¡¡phenomenon¡¡up¡¡to¡¡the¡¡more

remote¡­¡¡regressive£»¡¡that¡¡which¡¡proceeds¡¡on¡¡the¡¡side¡¡of¡¡the

conditioned£»¡¡from¡¡the¡¡immediate¡¡consequence¡¡to¡¡the¡¡more¡¡remote£»¡¡I

shall¡¡call¡¡the¡¡progressive¡¡synthesis¡£¡¡The¡¡former¡¡proceeds¡¡in

antecedentia£»¡¡the¡¡latter¡¡in¡¡consequentia¡£¡¡The¡¡cosmological¡¡ideas¡¡are

therefore¡¡occupied¡¡with¡¡the¡¡totality¡¡of¡¡the¡¡regressive¡¡synthesis£»

and¡¡proceed¡¡in¡¡antecedentia£»¡¡not¡¡in¡¡consequentia¡£¡¡When¡¡the¡¡latter

takes¡¡place£»¡¡it¡¡is¡¡an¡¡arbitrary¡¡and¡¡not¡¡a¡¡necessary¡¡problem¡¡of¡¡pure

reason£»¡¡for¡¡we¡¡require£»¡¡for¡¡the¡¡complete¡¡understanding¡¡of¡¡what¡¡is

given¡¡in¡¡a¡¡phenomenon£»¡¡not¡¡the¡¡consequences¡¡which¡¡succeed£»¡¡but¡¡the

grounds¡¡or¡¡principles¡¡which¡¡precede¡£

¡¡¡¡In¡¡order¡¡to¡¡construct¡¡the¡¡table¡¡of¡¡ideas¡¡in¡¡correspondence¡¡with

the¡¡table¡¡of¡¡categories£»¡¡we¡¡take¡¡first¡¡the¡¡two¡¡primitive¡¡quanta¡¡of¡¡all

our¡¡intuitions£»¡¡time¡¡and¡¡space¡£¡¡Time¡¡is¡¡in¡¡itself¡¡a¡¡series¡¡£¨and¡¡the

formal¡¡condition¡¡of¡¡all¡¡series£©£»¡¡and¡¡hence£»¡¡in¡¡relation¡¡to¡¡a¡¡given

present£»¡¡we¡¡must¡¡distinguish¡¡a¡¡priori¡¡in¡¡it¡¡the¡¡antecedentia¡¡as

conditions¡¡£¨time¡¡past£©¡¡from¡¡the¡¡consequentia¡¡£¨time¡¡future£©¡£

Consequently£»¡¡the¡¡transcendental¡¡idea¡¡of¡¡the¡¡absolute¡¡totality¡¡of

the¡¡series¡¡of¡¡the¡¡conditions¡¡of¡¡a¡¡given¡¡conditioned£»¡¡relates¡¡merely¡¡to

all¡¡past¡¡time¡£¡¡According¡¡to¡¡the¡¡idea¡¡of¡¡reason£»¡¡the¡¡whole¡¡past¡¡time£»

as¡¡the¡¡condition¡¡of¡¡the¡¡given¡¡moment£»¡¡is¡¡necessarily¡¡cogitated¡¡as

given¡£¡¡But£»¡¡as¡¡regards¡¡space£»¡¡there¡¡exists¡¡in¡¡it¡¡no¡¡distinction

between¡¡progressus¡¡and¡¡regressus£»¡¡for¡¡it¡¡is¡¡an¡¡aggregate¡¡and¡¡not¡¡a

series¡­¡¡its¡¡parts¡¡existing¡¡together¡¡at¡¡the¡¡same¡¡time¡£¡¡I¡¡can¡¡consider¡¡a

given¡¡point¡¡of¡¡time¡¡in¡¡relation¡¡to¡¡past¡¡time¡¡only¡¡as¡¡conditioned£»

because¡¡this¡¡given¡¡moment¡¡comes¡¡into¡¡existence¡¡only¡¡through¡¡the¡¡past

time¡¡rather¡¡through¡¡the¡¡passing¡¡of¡¡the¡¡preceding¡¡time¡£¡¡But¡¡as¡¡the

parts¡¡of¡¡space¡¡are¡¡not¡¡subordinated£»¡¡but¡¡co¡­ordinated¡¡to¡¡each¡¡other£»

one¡¡part¡¡cannot¡¡be¡¡the¡¡condition¡¡of¡¡the¡¡possibility¡¡of¡¡the¡¡other£»

and¡¡space¡¡is¡¡not¡¡in¡¡itself£»¡¡like¡¡time£»¡¡a¡¡series¡£¡¡But¡¡the¡¡synthesis

of¡¡the¡¡manifold¡¡parts¡¡of¡¡space¡­¡¡£¨the¡¡syntheses¡¡whereby¡¡we¡¡apprehend

space£©¡­¡¡is¡¡nevertheless¡¡successive£»¡¡it¡¡takes¡¡place£»¡¡therefore£»¡¡in

time£»¡¡and¡¡contains¡¡a¡¡series¡£¡¡And¡¡as¡¡in¡¡this¡¡series¡¡of¡¡aggregated

spaces¡¡£¨for¡¡example£»¡¡the¡¡feet¡¡in¡¡a¡¡rood£©£»¡¡beginning¡¡with¡¡a¡¡given

portion¡¡of¡¡space£»¡¡those¡¡which¡¡continue¡¡to¡¡be¡¡annexed¡¡form¡¡the

condition¡¡of¡¡the¡¡limits¡¡of¡¡the¡¡former¡­¡¡the¡¡measurement¡¡of¡¡a¡¡space¡¡must

also¡¡be¡¡regarded¡¡as¡¡a¡¡synthesis¡¡of¡¡the¡¡series¡¡of¡¡the¡¡conditions¡¡of¡¡a

given¡¡conditioned¡£¡¡It¡¡differs£»¡¡however£»¡¡in¡¡this¡¡respect¡¡from¡¡that¡¡of

time£»¡¡that¡¡the¡¡side¡¡of¡¡the¡¡conditioned¡¡is¡¡not¡¡in¡¡itself

distinguishable¡¡from¡¡the¡¡side¡¡of¡¡the¡¡condition£»¡¡and£»¡¡consequently£»

regressus¡¡and¡¡progressus¡¡in¡¡space¡¡seem¡¡to¡¡be¡¡identical¡£¡¡But£»

inasmuch¡¡as¡¡one¡¡part¡¡of¡¡space¡¡is¡¡not¡¡given£»¡¡but¡¡only¡¡limited£»¡¡by¡¡and

through¡¡another£»¡¡we¡¡must¡¡also¡¡consider¡¡every¡¡limited¡¡space¡¡as

conditioned£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡presupposes¡¡some¡¡other¡¡space¡¡as¡¡the

condition¡¡of¡¡its¡¡limitation£»¡¡and¡¡so¡¡on¡£¡¡As¡¡regards¡¡limitation£»

therefore£»¡¡our¡¡procedure¡¡in¡¡space¡¡is¡¡also¡¡a¡¡regressus£»¡¡and¡¡the

transcendental¡¡idea¡¡of¡¡the¡¡absolute¡¡totality¡¡of¡¡the¡¡synthesis¡¡in¡¡a

series¡¡of¡¡conditions¡¡applies¡¡to¡¡space¡¡also£»¡¡and¡¡I¡¡am¡¡entitled¡¡to

demand¡¡the¡¡absolute¡¡totality¡¡of¡¡the¡¡phenomenal¡¡synthesis¡¡in¡¡space¡¡as

well¡¡as¡¡in¡¡time¡£¡¡Whether¡¡my¡¡demand¡¡can¡¡be¡¡satisfied¡¡is¡¡a¡¡question¡¡to

be¡¡answered¡¡in¡¡the¡¡sequel¡£

¡¡¡¡Secondly£»¡¡the¡¡real¡¡in¡¡space¡­¡¡that¡¡is£»¡¡matter¡­¡¡is¡¡conditioned¡£¡¡Its

internal¡¡conditions¡¡are¡¡its¡¡parts£»¡¡and¡¡the¡¡parts¡¡of¡¡parts¡¡its¡¡remote

conditions£»¡¡so¡¡that¡¡in¡¡this¡¡case¡¡we¡¡find¡¡a¡¡regressive¡¡synthesis£»¡¡the

absolute¡¡totality¡¡of¡¡which¡¡is¡¡a¡¡demand¡¡of¡¡reason¡£¡¡But¡¡this¡¡cannot¡¡be

obtained¡¡otherwise¡¡than¡¡by¡¡a¡¡complete¡¡division¡¡of¡¡parts£»¡¡whereby¡¡the

real¡¡in¡¡matter¡¡becomes¡¡either¡¡nothing¡¡or¡¡that¡¡which¡¡is¡¡not¡¡matter£»

that¡¡is¡¡to¡¡say£»¡¡the¡¡simple¡£¡¡Consequently¡¡we¡¡find¡¡here¡¡also¡¡a¡¡series¡¡of

conditions¡¡and¡¡a¡¡progress¡¡to¡¡the¡¡unconditioned¡£

¡¡¡¡Thirdly£»¡¡as¡¡regards¡¡the¡¡categories¡¡of¡¡a¡¡real¡¡relation¡¡between

phenomena£»¡¡the¡¡category¡¡of¡¡substance¡¡and¡¡its¡¡accidents¡¡is¡¡not¡¡suitable

for¡¡the¡¡formati
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü