business¡¡of¡¡our¡¡reason¡¡consists¡¡in¡¡the¡¡analysation¡¡of¡¡the
conceptions¡¡which¡¡we¡¡already¡¡possess¡¡of¡¡objects¡£¡¡By¡¡this¡¡means¡¡we¡¡gain
a¡¡multitude¡¡of¡¡cognitions£»¡¡which¡¡although¡¡really¡¡nothing¡¡more¡¡than
elucidations¡¡or¡¡explanations¡¡of¡¡that¡¡which¡¡£¨though¡¡in¡¡a¡¡confused
manner£©¡¡was¡¡already¡¡thought¡¡in¡¡our¡¡conceptions£»¡¡are£»¡¡at¡¡least¡¡in
respect¡¡of¡¡their¡¡form£»¡¡prized¡¡as¡¡new¡¡introspections£»¡¡whilst£»¡¡so¡¡far¡¡as
regards¡¡their¡¡matter¡¡or¡¡content£»¡¡we¡¡have¡¡really¡¡made¡¡no¡¡addition¡¡to
our¡¡conceptions£»¡¡but¡¡only¡¡disinvolved¡¡them¡£¡¡But¡¡as¡¡this¡¡process¡¡does
furnish¡¡a¡¡real¡¡priori¡¡knowledge£»¡¡which¡¡has¡¡a¡¡sure¡¡progress¡¡and
useful¡¡results£»¡¡reason£»¡¡deceived¡¡by¡¡this£»¡¡slips¡¡in£»¡¡without¡¡being
itself¡¡aware¡¡of¡¡it£»¡¡assertions¡¡of¡¡a¡¡quite¡¡different¡¡kind£»¡¡in¡¡which£»¡¡to
given¡¡conceptions¡¡it¡¡adds¡¡others£»¡¡a¡¡priori¡¡indeed£»¡¡but¡¡entirely
foreign¡¡to¡¡them£»¡¡without¡¡our¡¡knowing¡¡how¡¡it¡¡arrives¡¡at¡¡these£»¡¡and£»
indeed£»¡¡without¡¡such¡¡a¡¡question¡¡ever¡¡suggesting¡¡itself¡£¡¡I¡¡shall
therefore¡¡at¡¡once¡¡proceed¡¡to¡¡examine¡¡the¡¡difference¡¡between¡¡these
two¡¡modes¡¡of¡¡knowledge¡£
¡¡¡¡IV¡£¡¡Of¡¡the¡¡Difference¡¡Between¡¡Analytical¡¡and¡¡Synthetical¡¡Judgements¡£
¡¡¡¡In¡¡all¡¡judgements¡¡wherein¡¡the¡¡relation¡¡of¡¡a¡¡subject¡¡to¡¡the¡¡predicate
is¡¡cogitated¡¡£¨I¡¡mention¡¡affirmative¡¡judgements¡¡only¡¡here£»¡¡the
application¡¡to¡¡negative¡¡will¡¡be¡¡very¡¡easy£©£»¡¡this¡¡relation¡¡is
possible¡¡in¡¡two¡¡different¡¡ways¡£¡¡Either¡¡the¡¡predicate¡¡B¡¡belongs¡¡to
the¡¡subject¡¡A£»¡¡as¡¡somewhat¡¡which¡¡is¡¡contained¡¡£¨though¡¡covertly£©¡¡in¡¡the
conception¡¡A£»¡¡or¡¡the¡¡predicate¡¡B¡¡lies¡¡completely¡¡out¡¡of¡¡the¡¡conception
A£»¡¡although¡¡it¡¡stands¡¡in¡¡connection¡¡with¡¡it¡£¡¡In¡¡the¡¡first¡¡instance£»
I¡¡term¡¡the¡¡judgement¡¡analytical£»¡¡in¡¡the¡¡second£»¡¡synthetical¡£
Analytical¡¡judgements¡¡£¨affirmative£©¡¡are¡¡therefore¡¡those¡¡in¡¡which¡¡the
connection¡¡of¡¡the¡¡predicate¡¡with¡¡the¡¡subject¡¡is¡¡cogitated¡¡through
identity£»¡¡those¡¡in¡¡which¡¡this¡¡connection¡¡is¡¡cogitated¡¡without
identity£»¡¡are¡¡called¡¡synthetical¡¡judgements¡£¡¡The¡¡former¡¡may¡¡be
called¡¡explicative£»¡¡the¡¡latter¡¡augmentative¡¡judgements£»¡¡because¡¡the
former¡¡add¡¡in¡¡the¡¡predicate¡¡nothing¡¡to¡¡the¡¡conception¡¡of¡¡the
subject£»¡¡but¡¡only¡¡analyse¡¡it¡¡into¡¡its¡¡constituent¡¡conceptions£»¡¡which
were¡¡thought¡¡already¡¡in¡¡the¡¡subject£»¡¡although¡¡in¡¡a¡¡confused¡¡manner£»
the¡¡latter¡¡add¡¡to¡¡our¡¡conceptions¡¡of¡¡the¡¡subject¡¡a¡¡predicate¡¡which¡¡was
not¡¡contained¡¡in¡¡it£»¡¡and¡¡which¡¡no¡¡analysis¡¡could¡¡ever¡¡have
discovered¡¡therein¡£¡¡For¡¡example£»¡¡when¡¡I¡¡say£»¡¡¡¨All¡¡bodies¡¡are
extended£»¡¨¡¡this¡¡is¡¡an¡¡analytical¡¡judgement¡£¡¡For¡¡I¡¡need¡¡not¡¡go¡¡beyond
the¡¡conception¡¡of¡¡body¡¡in¡¡order¡¡to¡¡find¡¡extension¡¡connected¡¡with¡¡it£»
but¡¡merely¡¡analyse¡¡the¡¡conception£»¡¡that¡¡is£»¡¡become¡¡conscious¡¡of¡¡the
manifold¡¡properties¡¡which¡¡I¡¡think¡¡in¡¡that¡¡conception£»¡¡in¡¡order¡¡to
discover¡¡this¡¡predicate¡¡in¡¡it£º¡¡it¡¡is¡¡therefore¡¡an¡¡analytical
judgement¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡when¡¡I¡¡say£»¡¡¡¨All¡¡bodies¡¡are¡¡heavy£»¡¨
the¡¡predicate¡¡is¡¡something¡¡totally¡¡different¡¡from¡¡that¡¡which¡¡I¡¡think
in¡¡the¡¡mere¡¡conception¡¡of¡¡a¡¡body¡£¡¡By¡¡the¡¡addition¡¡of¡¡such¡¡a¡¡predicate£»
therefore£»¡¡it¡¡becomes¡¡a¡¡synthetical¡¡judgement¡£
¡¡¡¡Judgements¡¡of¡¡experience£»¡¡as¡¡such£»¡¡are¡¡always¡¡synthetical¡£¡¡For¡¡it
would¡¡be¡¡absurd¡¡to¡¡think¡¡of¡¡grounding¡¡an¡¡analytical¡¡judgement¡¡on
experience£»¡¡because¡¡in¡¡forming¡¡such¡¡a¡¡judgement¡¡I¡¡need¡¡not¡¡go¡¡out¡¡of
the¡¡sphere¡¡of¡¡my¡¡conceptions£»¡¡and¡¡therefore¡¡recourse¡¡to¡¡the
testimony¡¡of¡¡experience¡¡is¡¡quite¡¡unnecessary¡£¡¡That¡¡¡¨bodies¡¡are
extended¡¨¡¡is¡¡not¡¡an¡¡empirical¡¡judgement£»¡¡but¡¡a¡¡proposition¡¡which
stands¡¡firm¡¡a¡¡priori¡£¡¡For¡¡before¡¡addressing¡¡myself¡¡to¡¡experience£»¡¡I
already¡¡have¡¡in¡¡my¡¡conception¡¡all¡¡the¡¡requisite¡¡conditions¡¡for¡¡the
judgement£»¡¡and¡¡I¡¡have¡¡only¡¡to¡¡extract¡¡the¡¡predicate¡¡from¡¡the
conception£»¡¡according¡¡to¡¡the¡¡principle¡¡of¡¡contradiction£»¡¡and¡¡thereby
at¡¡the¡¡same¡¡time¡¡become¡¡conscious¡¡of¡¡the¡¡necessity¡¡of¡¡the¡¡judgement£»¡¡a
necessity¡¡which¡¡I¡¡could¡¡never¡¡learn¡¡from¡¡experience¡£¡¡On¡¡the¡¡other
hand£»¡¡though¡¡at¡¡first¡¡I¡¡do¡¡not¡¡at¡¡all¡¡include¡¡the¡¡predicate¡¡of
weight¡¡in¡¡my¡¡conception¡¡of¡¡body¡¡in¡¡general£»¡¡that¡¡conception¡¡still
indicates¡¡an¡¡object¡¡of¡¡experience£»¡¡a¡¡part¡¡of¡¡the¡¡totality¡¡of
experience£»¡¡to¡¡which¡¡I¡¡can¡¡still¡¡add¡¡other¡¡parts£»¡¡and¡¡this¡¡I¡¡do¡¡when¡¡I
recognize¡¡by¡¡observation¡¡that¡¡bodies¡¡are¡¡heavy¡£¡¡I¡¡can¡¡cognize
beforehand¡¡by¡¡analysis¡¡the¡¡conception¡¡of¡¡body¡¡through¡¡the
characteristics¡¡of¡¡extension£»¡¡impenetrability£»¡¡shape£»¡¡etc¡££»¡¡all
which¡¡are¡¡cogitated¡¡in¡¡this¡¡conception¡£¡¡But¡¡now¡¡I¡¡extend¡¡my¡¡knowledge£»
and¡¡looking¡¡back¡¡on¡¡experience¡¡from¡¡which¡¡I¡¡had¡¡derived¡¡this
conception¡¡of¡¡body£»¡¡I¡¡find¡¡weight¡¡at¡¡all¡¡times¡¡connected¡¡with¡¡the
above¡¡characteristics£»¡¡and¡¡therefore¡¡I¡¡synthetically¡¡add¡¡to¡¡my
conceptions¡¡this¡¡as¡¡a¡¡predicate£»¡¡and¡¡say£»¡¡¡¨All¡¡bodies¡¡are¡¡heavy¡£¡¨¡¡Thus
it¡¡is¡¡experience¡¡upon¡¡which¡¡rests¡¡the¡¡possibility¡¡of¡¡the¡¡synthesis
of¡¡the¡¡predicate¡¡of¡¡weight¡¡with¡¡the¡¡conception¡¡of¡¡body£»¡¡because¡¡both
conceptions£»¡¡although¡¡the¡¡one¡¡is¡¡not¡¡contained¡¡in¡¡the¡¡other£»¡¡still
belong¡¡to¡¡one¡¡another¡¡£¨only¡¡contingently£»¡¡however£©£»¡¡as¡¡parts¡¡of¡¡a
whole£»¡¡namely£»¡¡of¡¡experience£»¡¡which¡¡is¡¡itself¡¡a¡¡synthesis¡¡of
intuitions¡£
¡¡¡¡But¡¡to¡¡synthetical¡¡judgements¡¡a¡¡priori£»¡¡such¡¡aid¡¡is¡¡entirely
wanting¡£¡¡If¡¡I¡¡go¡¡out¡¡of¡¡and¡¡beyond¡¡the¡¡conception¡¡A£»¡¡in¡¡order¡¡to
recognize¡¡another¡¡B¡¡as¡¡connected¡¡with¡¡it£»¡¡what¡¡foundation¡¡have¡¡I¡¡to
rest¡¡on£»¡¡whereby¡¡to¡¡render¡¡the¡¡synthesis¡¡possible£¿¡¡I¡¡have¡¡here¡¡no
longer¡¡the¡¡advantage¡¡of¡¡looking¡¡out¡¡in¡¡the¡¡sphere¡¡of¡¡experience¡¡for
what¡¡I¡¡want¡£¡¡Let¡¡us¡¡take£»¡¡for¡¡example£»¡¡the¡¡proposition£»¡¡¡¨Everything
that¡¡happens¡¡has¡¡a¡¡cause¡£¡¨¡¡In¡¡the¡¡conception¡¡of¡¡¡¨something¡¡that
happens£»¡¨¡¡I¡¡indeed¡¡think¡¡an¡¡existence¡¡which¡¡a¡¡certain¡¡time
antecedes£»¡¡and¡¡from¡¡this¡¡I¡¡can¡¡derive¡¡analytical¡¡judgements¡£¡¡But¡¡the
conception¡¡of¡¡a¡¡cause¡¡lies¡¡quite¡¡out¡¡of¡¡the¡¡above¡¡conception£»¡¡and
indicates¡¡something¡¡entirely¡¡different¡¡from¡¡¡¨that¡¡which¡¡happens£»¡¨
and¡¡is¡¡consequently¡¡not¡¡contained¡¡in¡¡that¡¡conception¡£¡¡How¡¡then¡¡am¡¡I
able¡¡to¡¡assert¡¡concerning¡¡the¡¡general¡¡conception¡¡¡¡¨that¡¡which
happens¡¨¡¡¡something¡¡entirely¡¡different¡¡from¡¡that¡¡conception£»¡¡and¡¡to
recognize¡¡the¡¡conception¡¡of¡¡cause¡¡although¡¡not¡¡contained¡¡in¡¡it£»¡¡yet¡¡as
belonging¡¡to¡¡it£»¡¡and¡¡even¡¡necessarily£¿¡¡what¡¡is¡¡here¡¡the¡¡unknown¡¡=¡¡X£»
upon¡¡which¡¡the¡¡understanding¡¡rests¡¡when¡¡it¡¡believes¡¡it¡¡has¡¡found£»
out¡¡of¡¡the¡¡conception¡¡A¡¡a¡¡foreign¡¡predicate¡¡B£»¡¡which¡¡it¡¡nevertheless
considers¡¡to¡¡be¡¡connected¡¡with¡¡it£¿¡¡It¡¡cannot¡¡be¡¡experience£»¡¡because
the¡¡principle¡¡adduced¡¡annexes¡¡the¡¡two¡¡representations£»¡¡cause¡¡and
effect£»¡¡to¡¡the¡¡representation¡¡existence£»¡¡not¡¡only¡¡with¡¡universality£»
which¡¡experience¡¡cannot¡¡give£»¡¡but¡¡also¡¡with¡¡the¡¡expression¡¡of
necessity£»¡¡therefore¡¡completely¡¡a¡¡priori¡¡and¡¡from¡¡pure¡¡conceptions¡£
Upon¡¡such¡¡synthetical£»¡¡that¡¡is¡¡augmentative¡¡propositions£»¡¡depends
the¡¡whole¡¡aim¡¡of¡¡our¡¡speculative¡¡knowledge¡¡a¡¡priori£»¡¡for¡¡although
analytical¡¡judgements¡¡are¡¡indeed¡¡highly¡¡important¡¡and¡¡necessary£»
they¡¡are¡¡so£»¡¡only¡¡to¡¡arrive¡¡at¡¡that¡¡clearness¡¡of¡¡conceptions¡¡which
is¡¡requisite¡¡for¡¡a¡¡sure¡¡and¡¡extended¡¡synthesis£»¡¡and¡¡this¡¡alone¡¡is¡¡a
real¡¡acquisition¡£
¡¡¡¡V¡£¡¡In¡¡all¡¡Theoretical¡¡Sciences¡¡of¡¡Reason£»¡¡Synthetical¡¡Judgements
¡¡¡¡¡¡¡¡¡¡¡¨a¡¡priori¡¨¡¡are¡¡contained¡¡as¡¡Principles¡£
¡¡¡¡1¡£¡¡Mathematical¡¡judgements¡¡are¡¡always¡¡synthetical¡£¡¡Hitherto¡¡this
fact£»¡¡though¡¡incontestably¡¡true¡¡and¡¡very¡¡important¡¡in¡¡its
consequences£»¡¡seems¡¡to¡¡have¡¡escaped¡¡the¡¡analysts¡¡of¡¡the¡¡human¡¡mind£»
nay£»¡¡to¡¡be¡¡in¡¡complete¡¡opposition¡¡to¡¡all¡¡their¡¡conjectures¡£¡¡For¡¡as
it¡¡was¡¡found¡¡that¡¡mathematical¡¡conclusions¡¡all¡¡proceed¡¡according¡¡to
the¡¡principle¡¡of¡¡contradiction¡¡£¨which¡¡the¡¡nature¡¡of¡¡every¡¡apodeictic
certainty¡¡requires£©£»¡¡people¡¡became¡¡persuaded¡¡that¡¡the¡¡fundamental
principles¡¡of¡¡the¡¡science¡¡also¡¡were¡¡recognized¡¡and¡¡admitted¡¡in¡¡the
same¡¡way¡£¡¡But¡¡the¡¡notion¡¡is¡¡fallacious£»¡¡for¡¡although¡¡a¡¡synthetical
proposition¡¡can¡¡certainly¡¡be¡¡discerned¡¡by¡¡means¡¡of¡¡the¡¡principle¡¡of
contradiction£»¡¡this¡¡is¡¡possible¡¡only¡¡when¡¡another¡¡synthetical
proposition¡¡precedes£»¡¡from¡¡which¡¡the¡¡latter¡¡is¡¡deduced£»¡¡but¡¡never¡¡of
itself¡¡which
¡¡¡¡Before¡¡all£»¡¡be¡¡it¡¡observed£»¡¡that¡¡proper¡¡mathematical¡¡propositions
are¡¡always¡¡judgements¡¡a¡¡priori£»¡¡and¡¡not¡¡empirical£»¡¡because¡¡they
carry¡¡along¡¡with¡¡them¡¡the¡¡conception¡¡of¡¡necessity£»¡¡which¡¡cannot¡¡be
given¡¡by¡¡experience¡£¡¡If¡¡this¡¡be¡¡demurred¡¡to£»¡¡it¡¡matters¡¡not£»¡¡I¡¡will
then¡¡limit¡¡my¡¡assertion¡¡to¡¡pure¡¡mathematics£»¡¡the¡¡very¡¡conception¡¡of
which¡¡implies¡¡that¡¡it¡¡consists¡¡of¡¡knowledge¡¡altogether¡¡non¡empirical
and¡¡a¡¡priori¡£
¡¡¡¡We¡¡might£»¡¡indeed¡¡at¡¡first¡¡suppose¡¡that¡¡the¡¡proposition¡¡7¡¡£«¡¡5¡¡=¡¡12¡¡is
a¡¡merely¡¡analytical¡¡proposition£»¡¡following¡¡£¨according¡¡to¡¡the¡¡principle
of¡¡contradiction£©¡¡from¡¡the¡¡conception¡¡of¡¡a¡¡sum¡¡of¡¡seven¡¡and¡¡five¡£
But¡¡if¡¡we¡¡regard¡¡it¡¡more¡¡narrowly£»¡¡we¡¡find¡¡that¡¡our¡¡conception¡¡of
the¡¡sum¡¡of¡¡seven¡¡and¡¡five¡¡contains¡¡nothing¡¡more¡¡than¡¡the¡¡uniting¡¡of
both¡¡sums¡¡into¡¡one£»¡¡whereby¡¡it¡¡cannot¡¡at¡¡all¡¡be¡¡cogitated¡¡what¡¡this
single¡¡number¡¡is¡¡which¡¡embraces¡¡both¡£¡¡The¡¡conception¡¡of¡¡twelve¡¡is¡¡by
no¡¡means¡¡obtained¡¡by¡¡merely¡¡cogitating¡¡the¡¡union¡¡of¡¡seven¡¡and¡¡five£»
and¡¡we¡¡may¡¡analyse¡¡our¡¡conception¡¡of¡¡such¡¡a¡¡possible¡¡sum¡¡as¡¡long¡¡as¡¡we
will£»¡¡still¡¡we¡¡shall¡¡never¡¡discover¡¡in¡¡it¡¡the¡¡notion¡¡of¡¡twelve¡£¡¡We
must¡¡go¡¡beyond¡¡these¡¡conceptions£»¡¡and¡¡have¡¡recourse¡¡to¡¡an¡¡intuition
which¡¡corresponds¡¡to¡¡one¡¡of¡¡the¡¡two¡¡¡our¡¡five¡¡fingers£»¡¡for¡¡example£»¡¡or
like¡¡Segner¡¡in¡¡his¡¡Arithmetic¡¡five¡¡points£»¡¡and¡¡so¡¡by¡¡degrees£»¡¡add
the¡¡units¡¡contained¡¡in¡¡the¡¡five¡¡given¡¡in¡¡the¡¡intuition£»¡¡to¡¡the
conception¡¡of¡¡seven¡£¡¡For¡¡I¡¡first¡¡take¡¡the¡¡number¡¡7£»¡¡and£»¡¡for¡¡the
conception¡¡of¡¡5¡¡calling¡¡in¡¡the¡¡aid¡¡of¡¡the¡¡fingers¡¡of¡¡my¡¡hand¡¡as
objects¡¡of¡¡intuition£»¡¡I¡¡add¡¡the¡¡units£»¡¡which¡¡I¡¡before¡¡took¡¡together¡¡to
make¡¡up¡¡the¡¡number¡¡5£»¡¡gradually¡¡now¡¡by¡¡means¡¡of¡¡the¡¡material¡¡image
my¡¡hand£»¡¡to¡¡the¡¡number¡¡7£»¡¡and¡¡by¡¡this¡¡process£»¡¡I¡¡at¡¡length¡¡see¡¡the
number¡¡12¡¡arise¡£¡¡That¡¡7¡¡should¡¡be¡¡added¡¡to¡¡5£»¡¡I¡¡have¡¡certainly
cogitated¡¡in¡¡my¡¡conception¡¡of¡¡a¡¡sum¡¡=¡¡7¡¡£«¡¡5£»¡¡but¡¡not¡¡that¡¡this¡¡sum¡¡was
equal¡¡to¡¡12¡£¡¡Arithmetical¡¡propositions¡¡are¡¡therefore¡¡always
synthetical£»¡¡of¡¡which¡¡we¡¡may¡¡become¡¡more¡¡clearly¡¡convinced¡¡by¡¡trying
large¡¡numbers¡£¡¡For¡¡it¡¡will¡¡thus¡¡become¡¡quite¡¡evident¡¡that£»¡¡turn¡¡and
twist¡¡our¡¡conceptions¡¡as¡¡we¡¡may£»¡¡it¡¡is¡¡impossible£»¡¡without¡¡having
recourse¡¡to¡¡intuition£»¡¡to¡¡arrive¡¡at¡¡the¡¡sum¡¡total¡¡or¡¡product¡¡by
means¡¡of¡¡the¡¡mere¡¡analysis¡¡of¡¡our¡¡conceptions¡£¡¡just¡¡as¡¡little¡¡is¡¡an
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü