¡¶the critique of pure reason¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

the critique of pure reason- µÚ9²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡

business¡¡of¡¡our¡¡reason¡¡consists¡¡in¡¡the¡¡analysation¡¡of¡¡the

conceptions¡¡which¡¡we¡¡already¡¡possess¡¡of¡¡objects¡£¡¡By¡¡this¡¡means¡¡we¡¡gain

a¡¡multitude¡¡of¡¡cognitions£»¡¡which¡¡although¡¡really¡¡nothing¡¡more¡¡than

elucidations¡¡or¡¡explanations¡¡of¡¡that¡¡which¡¡£¨though¡¡in¡¡a¡¡confused

manner£©¡¡was¡¡already¡¡thought¡¡in¡¡our¡¡conceptions£»¡¡are£»¡¡at¡¡least¡¡in

respect¡¡of¡¡their¡¡form£»¡¡prized¡¡as¡¡new¡¡introspections£»¡¡whilst£»¡¡so¡¡far¡¡as

regards¡¡their¡¡matter¡¡or¡¡content£»¡¡we¡¡have¡¡really¡¡made¡¡no¡¡addition¡¡to

our¡¡conceptions£»¡¡but¡¡only¡¡disinvolved¡¡them¡£¡¡But¡¡as¡¡this¡¡process¡¡does

furnish¡¡a¡¡real¡¡priori¡¡knowledge£»¡¡which¡¡has¡¡a¡¡sure¡¡progress¡¡and

useful¡¡results£»¡¡reason£»¡¡deceived¡¡by¡¡this£»¡¡slips¡¡in£»¡¡without¡¡being

itself¡¡aware¡¡of¡¡it£»¡¡assertions¡¡of¡¡a¡¡quite¡¡different¡¡kind£»¡¡in¡¡which£»¡¡to

given¡¡conceptions¡¡it¡¡adds¡¡others£»¡¡a¡¡priori¡¡indeed£»¡¡but¡¡entirely

foreign¡¡to¡¡them£»¡¡without¡¡our¡¡knowing¡¡how¡¡it¡¡arrives¡¡at¡¡these£»¡¡and£»

indeed£»¡¡without¡¡such¡¡a¡¡question¡¡ever¡¡suggesting¡¡itself¡£¡¡I¡¡shall

therefore¡¡at¡¡once¡¡proceed¡¡to¡¡examine¡¡the¡¡difference¡¡between¡¡these

two¡¡modes¡¡of¡¡knowledge¡£



¡¡¡¡IV¡£¡¡Of¡¡the¡¡Difference¡¡Between¡¡Analytical¡¡and¡¡Synthetical¡¡Judgements¡£



¡¡¡¡In¡¡all¡¡judgements¡¡wherein¡¡the¡¡relation¡¡of¡¡a¡¡subject¡¡to¡¡the¡¡predicate

is¡¡cogitated¡¡£¨I¡¡mention¡¡affirmative¡¡judgements¡¡only¡¡here£»¡¡the

application¡¡to¡¡negative¡¡will¡¡be¡¡very¡¡easy£©£»¡¡this¡¡relation¡¡is

possible¡¡in¡¡two¡¡different¡¡ways¡£¡¡Either¡¡the¡¡predicate¡¡B¡¡belongs¡¡to

the¡¡subject¡¡A£»¡¡as¡¡somewhat¡¡which¡¡is¡¡contained¡¡£¨though¡¡covertly£©¡¡in¡¡the

conception¡¡A£»¡¡or¡¡the¡¡predicate¡¡B¡¡lies¡¡completely¡¡out¡¡of¡¡the¡¡conception

A£»¡¡although¡¡it¡¡stands¡¡in¡¡connection¡¡with¡¡it¡£¡¡In¡¡the¡¡first¡¡instance£»

I¡¡term¡¡the¡¡judgement¡¡analytical£»¡¡in¡¡the¡¡second£»¡¡synthetical¡£

Analytical¡¡judgements¡¡£¨affirmative£©¡¡are¡¡therefore¡¡those¡¡in¡¡which¡¡the

connection¡¡of¡¡the¡¡predicate¡¡with¡¡the¡¡subject¡¡is¡¡cogitated¡¡through

identity£»¡¡those¡¡in¡¡which¡¡this¡¡connection¡¡is¡¡cogitated¡¡without

identity£»¡¡are¡¡called¡¡synthetical¡¡judgements¡£¡¡The¡¡former¡¡may¡¡be

called¡¡explicative£»¡¡the¡¡latter¡¡augmentative¡¡judgements£»¡¡because¡¡the

former¡¡add¡¡in¡¡the¡¡predicate¡¡nothing¡¡to¡¡the¡¡conception¡¡of¡¡the

subject£»¡¡but¡¡only¡¡analyse¡¡it¡¡into¡¡its¡¡constituent¡¡conceptions£»¡¡which

were¡¡thought¡¡already¡¡in¡¡the¡¡subject£»¡¡although¡¡in¡¡a¡¡confused¡¡manner£»

the¡¡latter¡¡add¡¡to¡¡our¡¡conceptions¡¡of¡¡the¡¡subject¡¡a¡¡predicate¡¡which¡¡was

not¡¡contained¡¡in¡¡it£»¡¡and¡¡which¡¡no¡¡analysis¡¡could¡¡ever¡¡have

discovered¡¡therein¡£¡¡For¡¡example£»¡¡when¡¡I¡¡say£»¡¡¡¨All¡¡bodies¡¡are

extended£»¡¨¡¡this¡¡is¡¡an¡¡analytical¡¡judgement¡£¡¡For¡¡I¡¡need¡¡not¡¡go¡¡beyond

the¡¡conception¡¡of¡¡body¡¡in¡¡order¡¡to¡¡find¡¡extension¡¡connected¡¡with¡¡it£»

but¡¡merely¡¡analyse¡¡the¡¡conception£»¡¡that¡¡is£»¡¡become¡¡conscious¡¡of¡¡the

manifold¡¡properties¡¡which¡¡I¡¡think¡¡in¡¡that¡¡conception£»¡¡in¡¡order¡¡to

discover¡¡this¡¡predicate¡¡in¡¡it£º¡¡it¡¡is¡¡therefore¡¡an¡¡analytical

judgement¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡when¡¡I¡¡say£»¡¡¡¨All¡¡bodies¡¡are¡¡heavy£»¡¨

the¡¡predicate¡¡is¡¡something¡¡totally¡¡different¡¡from¡¡that¡¡which¡¡I¡¡think

in¡¡the¡¡mere¡¡conception¡¡of¡¡a¡¡body¡£¡¡By¡¡the¡¡addition¡¡of¡¡such¡¡a¡¡predicate£»

therefore£»¡¡it¡¡becomes¡¡a¡¡synthetical¡¡judgement¡£

¡¡¡¡Judgements¡¡of¡¡experience£»¡¡as¡¡such£»¡¡are¡¡always¡¡synthetical¡£¡¡For¡¡it

would¡¡be¡¡absurd¡¡to¡¡think¡¡of¡¡grounding¡¡an¡¡analytical¡¡judgement¡¡on

experience£»¡¡because¡¡in¡¡forming¡¡such¡¡a¡¡judgement¡¡I¡¡need¡¡not¡¡go¡¡out¡¡of

the¡¡sphere¡¡of¡¡my¡¡conceptions£»¡¡and¡¡therefore¡¡recourse¡¡to¡¡the

testimony¡¡of¡¡experience¡¡is¡¡quite¡¡unnecessary¡£¡¡That¡¡¡¨bodies¡¡are

extended¡¨¡¡is¡¡not¡¡an¡¡empirical¡¡judgement£»¡¡but¡¡a¡¡proposition¡¡which

stands¡¡firm¡¡a¡¡priori¡£¡¡For¡¡before¡¡addressing¡¡myself¡¡to¡¡experience£»¡¡I

already¡¡have¡¡in¡¡my¡¡conception¡¡all¡¡the¡¡requisite¡¡conditions¡¡for¡¡the

judgement£»¡¡and¡¡I¡¡have¡¡only¡¡to¡¡extract¡¡the¡¡predicate¡¡from¡¡the

conception£»¡¡according¡¡to¡¡the¡¡principle¡¡of¡¡contradiction£»¡¡and¡¡thereby

at¡¡the¡¡same¡¡time¡¡become¡¡conscious¡¡of¡¡the¡¡necessity¡¡of¡¡the¡¡judgement£»¡¡a

necessity¡¡which¡¡I¡¡could¡¡never¡¡learn¡¡from¡¡experience¡£¡¡On¡¡the¡¡other

hand£»¡¡though¡¡at¡¡first¡¡I¡¡do¡¡not¡¡at¡¡all¡¡include¡¡the¡¡predicate¡¡of

weight¡¡in¡¡my¡¡conception¡¡of¡¡body¡¡in¡¡general£»¡¡that¡¡conception¡¡still

indicates¡¡an¡¡object¡¡of¡¡experience£»¡¡a¡¡part¡¡of¡¡the¡¡totality¡¡of

experience£»¡¡to¡¡which¡¡I¡¡can¡¡still¡¡add¡¡other¡¡parts£»¡¡and¡¡this¡¡I¡¡do¡¡when¡¡I

recognize¡¡by¡¡observation¡¡that¡¡bodies¡¡are¡¡heavy¡£¡¡I¡¡can¡¡cognize

beforehand¡¡by¡¡analysis¡¡the¡¡conception¡¡of¡¡body¡¡through¡¡the

characteristics¡¡of¡¡extension£»¡¡impenetrability£»¡¡shape£»¡¡etc¡££»¡¡all

which¡¡are¡¡cogitated¡¡in¡¡this¡¡conception¡£¡¡But¡¡now¡¡I¡¡extend¡¡my¡¡knowledge£»

and¡¡looking¡¡back¡¡on¡¡experience¡¡from¡¡which¡¡I¡¡had¡¡derived¡¡this

conception¡¡of¡¡body£»¡¡I¡¡find¡¡weight¡¡at¡¡all¡¡times¡¡connected¡¡with¡¡the

above¡¡characteristics£»¡¡and¡¡therefore¡¡I¡¡synthetically¡¡add¡¡to¡¡my

conceptions¡¡this¡¡as¡¡a¡¡predicate£»¡¡and¡¡say£»¡¡¡¨All¡¡bodies¡¡are¡¡heavy¡£¡¨¡¡Thus

it¡¡is¡¡experience¡¡upon¡¡which¡¡rests¡¡the¡¡possibility¡¡of¡¡the¡¡synthesis

of¡¡the¡¡predicate¡¡of¡¡weight¡¡with¡¡the¡¡conception¡¡of¡¡body£»¡¡because¡¡both

conceptions£»¡¡although¡¡the¡¡one¡¡is¡¡not¡¡contained¡¡in¡¡the¡¡other£»¡¡still

belong¡¡to¡¡one¡¡another¡¡£¨only¡¡contingently£»¡¡however£©£»¡¡as¡¡parts¡¡of¡¡a

whole£»¡¡namely£»¡¡of¡¡experience£»¡¡which¡¡is¡¡itself¡¡a¡¡synthesis¡¡of

intuitions¡£

¡¡¡¡But¡¡to¡¡synthetical¡¡judgements¡¡a¡¡priori£»¡¡such¡¡aid¡¡is¡¡entirely

wanting¡£¡¡If¡¡I¡¡go¡¡out¡¡of¡¡and¡¡beyond¡¡the¡¡conception¡¡A£»¡¡in¡¡order¡¡to

recognize¡¡another¡¡B¡¡as¡¡connected¡¡with¡¡it£»¡¡what¡¡foundation¡¡have¡¡I¡¡to

rest¡¡on£»¡¡whereby¡¡to¡¡render¡¡the¡¡synthesis¡¡possible£¿¡¡I¡¡have¡¡here¡¡no

longer¡¡the¡¡advantage¡¡of¡¡looking¡¡out¡¡in¡¡the¡¡sphere¡¡of¡¡experience¡¡for

what¡¡I¡¡want¡£¡¡Let¡¡us¡¡take£»¡¡for¡¡example£»¡¡the¡¡proposition£»¡¡¡¨Everything

that¡¡happens¡¡has¡¡a¡¡cause¡£¡¨¡¡In¡¡the¡¡conception¡¡of¡¡¡¨something¡¡that

happens£»¡¨¡¡I¡¡indeed¡¡think¡¡an¡¡existence¡¡which¡¡a¡¡certain¡¡time

antecedes£»¡¡and¡¡from¡¡this¡¡I¡¡can¡¡derive¡¡analytical¡¡judgements¡£¡¡But¡¡the

conception¡¡of¡¡a¡¡cause¡¡lies¡¡quite¡¡out¡¡of¡¡the¡¡above¡¡conception£»¡¡and

indicates¡¡something¡¡entirely¡¡different¡¡from¡¡¡¨that¡¡which¡¡happens£»¡¨

and¡¡is¡¡consequently¡¡not¡¡contained¡¡in¡¡that¡¡conception¡£¡¡How¡¡then¡¡am¡¡I

able¡¡to¡¡assert¡¡concerning¡¡the¡¡general¡¡conception¡­¡¡¡¨that¡¡which

happens¡¨¡­¡¡something¡¡entirely¡¡different¡¡from¡¡that¡¡conception£»¡¡and¡¡to

recognize¡¡the¡¡conception¡¡of¡¡cause¡¡although¡¡not¡¡contained¡¡in¡¡it£»¡¡yet¡¡as

belonging¡¡to¡¡it£»¡¡and¡¡even¡¡necessarily£¿¡¡what¡¡is¡¡here¡¡the¡¡unknown¡¡=¡¡X£»

upon¡¡which¡¡the¡¡understanding¡¡rests¡¡when¡¡it¡¡believes¡¡it¡¡has¡¡found£»

out¡¡of¡¡the¡¡conception¡¡A¡¡a¡¡foreign¡¡predicate¡¡B£»¡¡which¡¡it¡¡nevertheless

considers¡¡to¡¡be¡¡connected¡¡with¡¡it£¿¡¡It¡¡cannot¡¡be¡¡experience£»¡¡because

the¡¡principle¡¡adduced¡¡annexes¡¡the¡¡two¡¡representations£»¡¡cause¡¡and

effect£»¡¡to¡¡the¡¡representation¡¡existence£»¡¡not¡¡only¡¡with¡¡universality£»

which¡¡experience¡¡cannot¡¡give£»¡¡but¡¡also¡¡with¡¡the¡¡expression¡¡of

necessity£»¡¡therefore¡¡completely¡¡a¡¡priori¡¡and¡¡from¡¡pure¡¡conceptions¡£

Upon¡¡such¡¡synthetical£»¡¡that¡¡is¡¡augmentative¡¡propositions£»¡¡depends

the¡¡whole¡¡aim¡¡of¡¡our¡¡speculative¡¡knowledge¡¡a¡¡priori£»¡¡for¡¡although

analytical¡¡judgements¡¡are¡¡indeed¡¡highly¡¡important¡¡and¡¡necessary£»

they¡¡are¡¡so£»¡¡only¡¡to¡¡arrive¡¡at¡¡that¡¡clearness¡¡of¡¡conceptions¡¡which

is¡¡requisite¡¡for¡¡a¡¡sure¡¡and¡¡extended¡¡synthesis£»¡¡and¡¡this¡¡alone¡¡is¡¡a

real¡¡acquisition¡£



¡¡¡¡V¡£¡¡In¡¡all¡¡Theoretical¡¡Sciences¡¡of¡¡Reason£»¡¡Synthetical¡¡Judgements

¡¡¡¡¡¡¡¡¡¡¡¨a¡¡priori¡¨¡¡are¡¡contained¡¡as¡¡Principles¡£



¡¡¡¡1¡£¡¡Mathematical¡¡judgements¡¡are¡¡always¡¡synthetical¡£¡¡Hitherto¡¡this

fact£»¡¡though¡¡incontestably¡¡true¡¡and¡¡very¡¡important¡¡in¡¡its

consequences£»¡¡seems¡¡to¡¡have¡¡escaped¡¡the¡¡analysts¡¡of¡¡the¡¡human¡¡mind£»

nay£»¡¡to¡¡be¡¡in¡¡complete¡¡opposition¡¡to¡¡all¡¡their¡¡conjectures¡£¡¡For¡¡as

it¡¡was¡¡found¡¡that¡¡mathematical¡¡conclusions¡¡all¡¡proceed¡¡according¡¡to

the¡¡principle¡¡of¡¡contradiction¡¡£¨which¡¡the¡¡nature¡¡of¡¡every¡¡apodeictic

certainty¡¡requires£©£»¡¡people¡¡became¡¡persuaded¡¡that¡¡the¡¡fundamental

principles¡¡of¡¡the¡¡science¡¡also¡¡were¡¡recognized¡¡and¡¡admitted¡¡in¡¡the

same¡¡way¡£¡¡But¡¡the¡¡notion¡¡is¡¡fallacious£»¡¡for¡¡although¡¡a¡¡synthetical

proposition¡¡can¡¡certainly¡¡be¡¡discerned¡¡by¡¡means¡¡of¡¡the¡¡principle¡¡of

contradiction£»¡¡this¡¡is¡¡possible¡¡only¡¡when¡¡another¡¡synthetical

proposition¡¡precedes£»¡¡from¡¡which¡¡the¡¡latter¡¡is¡¡deduced£»¡¡but¡¡never¡¡of

itself¡¡which

¡¡¡¡Before¡¡all£»¡¡be¡¡it¡¡observed£»¡¡that¡¡proper¡¡mathematical¡¡propositions

are¡¡always¡¡judgements¡¡a¡¡priori£»¡¡and¡¡not¡¡empirical£»¡¡because¡¡they

carry¡¡along¡¡with¡¡them¡¡the¡¡conception¡¡of¡¡necessity£»¡¡which¡¡cannot¡¡be

given¡¡by¡¡experience¡£¡¡If¡¡this¡¡be¡¡demurred¡¡to£»¡¡it¡¡matters¡¡not£»¡¡I¡¡will

then¡¡limit¡¡my¡¡assertion¡¡to¡¡pure¡¡mathematics£»¡¡the¡¡very¡¡conception¡¡of

which¡¡implies¡¡that¡¡it¡¡consists¡¡of¡¡knowledge¡¡altogether¡¡non¡­empirical

and¡¡a¡¡priori¡£

¡¡¡¡We¡¡might£»¡¡indeed¡¡at¡¡first¡¡suppose¡¡that¡¡the¡¡proposition¡¡7¡¡£«¡¡5¡¡=¡¡12¡¡is

a¡¡merely¡¡analytical¡¡proposition£»¡¡following¡¡£¨according¡¡to¡¡the¡¡principle

of¡¡contradiction£©¡¡from¡¡the¡¡conception¡¡of¡¡a¡¡sum¡¡of¡¡seven¡¡and¡¡five¡£

But¡¡if¡¡we¡¡regard¡¡it¡¡more¡¡narrowly£»¡¡we¡¡find¡¡that¡¡our¡¡conception¡¡of

the¡¡sum¡¡of¡¡seven¡¡and¡¡five¡¡contains¡¡nothing¡¡more¡¡than¡¡the¡¡uniting¡¡of

both¡¡sums¡¡into¡¡one£»¡¡whereby¡¡it¡¡cannot¡¡at¡¡all¡¡be¡¡cogitated¡¡what¡¡this

single¡¡number¡¡is¡¡which¡¡embraces¡¡both¡£¡¡The¡¡conception¡¡of¡¡twelve¡¡is¡¡by

no¡¡means¡¡obtained¡¡by¡¡merely¡¡cogitating¡¡the¡¡union¡¡of¡¡seven¡¡and¡¡five£»

and¡¡we¡¡may¡¡analyse¡¡our¡¡conception¡¡of¡¡such¡¡a¡¡possible¡¡sum¡¡as¡¡long¡¡as¡¡we

will£»¡¡still¡¡we¡¡shall¡¡never¡¡discover¡¡in¡¡it¡¡the¡¡notion¡¡of¡¡twelve¡£¡¡We

must¡¡go¡¡beyond¡¡these¡¡conceptions£»¡¡and¡¡have¡¡recourse¡¡to¡¡an¡¡intuition

which¡¡corresponds¡¡to¡¡one¡¡of¡¡the¡¡two¡­¡¡our¡¡five¡¡fingers£»¡¡for¡¡example£»¡¡or

like¡¡Segner¡¡in¡¡his¡¡Arithmetic¡¡five¡¡points£»¡¡and¡¡so¡¡by¡¡degrees£»¡¡add

the¡¡units¡¡contained¡¡in¡¡the¡¡five¡¡given¡¡in¡¡the¡¡intuition£»¡¡to¡¡the

conception¡¡of¡¡seven¡£¡¡For¡¡I¡¡first¡¡take¡¡the¡¡number¡¡7£»¡¡and£»¡¡for¡¡the

conception¡¡of¡¡5¡¡calling¡¡in¡¡the¡¡aid¡¡of¡¡the¡¡fingers¡¡of¡¡my¡¡hand¡¡as

objects¡¡of¡¡intuition£»¡¡I¡¡add¡¡the¡¡units£»¡¡which¡¡I¡¡before¡¡took¡¡together¡¡to

make¡¡up¡¡the¡¡number¡¡5£»¡¡gradually¡¡now¡¡by¡¡means¡¡of¡¡the¡¡material¡¡image

my¡¡hand£»¡¡to¡¡the¡¡number¡¡7£»¡¡and¡¡by¡¡this¡¡process£»¡¡I¡¡at¡¡length¡¡see¡¡the

number¡¡12¡¡arise¡£¡¡That¡¡7¡¡should¡¡be¡¡added¡¡to¡¡5£»¡¡I¡¡have¡¡certainly

cogitated¡¡in¡¡my¡¡conception¡¡of¡¡a¡¡sum¡¡=¡¡7¡¡£«¡¡5£»¡¡but¡¡not¡¡that¡¡this¡¡sum¡¡was

equal¡¡to¡¡12¡£¡¡Arithmetical¡¡propositions¡¡are¡¡therefore¡¡always

synthetical£»¡¡of¡¡which¡¡we¡¡may¡¡become¡¡more¡¡clearly¡¡convinced¡¡by¡¡trying

large¡¡numbers¡£¡¡For¡¡it¡¡will¡¡thus¡¡become¡¡quite¡¡evident¡¡that£»¡¡turn¡¡and

twist¡¡our¡¡conceptions¡¡as¡¡we¡¡may£»¡¡it¡¡is¡¡impossible£»¡¡without¡¡having

recourse¡¡to¡¡intuition£»¡¡to¡¡arrive¡¡at¡¡the¡¡sum¡¡total¡¡or¡¡product¡¡by

means¡¡of¡¡the¡¡mere¡¡analysis¡¡of¡¡our¡¡conceptions¡£¡¡just¡¡as¡¡little¡¡is¡¡an
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü