But¡¡true¡¡and¡¡exact¡¡reason£»¡¡vindicating¡¡the¡¡nature¡¡of¡¡true¡¡being£»
maintains¡¡that¡¡while¡¡two¡¡things¡¡£§i¡£e¡£¡¡the¡¡image¡¡and¡¡space£§¡¡are
different¡¡they¡¡cannot¡¡exist¡¡one¡¡of¡¡them¡¡in¡¡the¡¡other¡¡and¡¡so¡¡be¡¡one¡¡and
also¡¡two¡¡at¡¡the¡¡same¡¡time¡£
¡¡¡¡Thus¡¡have¡¡I¡¡concisely¡¡given¡¡the¡¡result¡¡of¡¡my¡¡thoughts£»¡¡and¡¡my
verdict¡¡is¡¡that¡¡being¡¡and¡¡space¡¡and¡¡generation£»¡¡these¡¡three£»¡¡existed
in¡¡their¡¡three¡¡ways¡¡before¡¡the¡¡heaven£»¡¡and¡¡that¡¡the¡¡nurse¡¡of
generation£»¡¡moistened¡¡by¡¡water¡¡and¡¡inflamed¡¡by¡¡fire£»¡¡and¡¡receiving¡¡the
forms¡¡of¡¡earth¡¡and¡¡air£»¡¡and¡¡experiencing¡¡all¡¡the¡¡affections¡¡which
accompany¡¡these£»¡¡presented¡¡a¡¡strange¡¡variety¡¡of¡¡appearances£»¡¡and¡¡being
full¡¡of¡¡powers¡¡which¡¡were¡¡neither¡¡similar¡¡nor¡¡equally¡¡balanced£»¡¡was
never¡¡in¡¡any¡¡part¡¡in¡¡a¡¡state¡¡of¡¡equipoise£»¡¡but¡¡swaying¡¡unevenly¡¡hither
and¡¡thither£»¡¡was¡¡shaken¡¡by¡¡them£»¡¡and¡¡by¡¡its¡¡motion¡¡again¡¡shook¡¡them£»
and¡¡the¡¡elements¡¡when¡¡moved¡¡were¡¡separated¡¡and¡¡carried¡¡continually£»
some¡¡one¡¡way£»¡¡some¡¡another£»¡¡as£»¡¡when¡¡rain¡¡is¡¡shaken¡¡and¡¡winnowed¡¡by
fans¡¡and¡¡other¡¡instruments¡¡used¡¡in¡¡the¡¡threshing¡¡of¡¡corn£»¡¡the¡¡close
and¡¡heavy¡¡particles¡¡are¡¡borne¡¡away¡¡and¡¡settle¡¡in¡¡one¡¡direction£»¡¡and
the¡¡loose¡¡and¡¡light¡¡particles¡¡in¡¡another¡£¡¡In¡¡this¡¡manner£»¡¡the¡¡four
kinds¡¡or¡¡elements¡¡were¡¡then¡¡shaken¡¡by¡¡the¡¡receiving¡¡vessel£»¡¡which£»
moving¡¡like¡¡a¡¡winnowing¡¡machine£»¡¡scattered¡¡far¡¡away¡¡from¡¡one¡¡another
the¡¡elements¡¡most¡¡unlike£»¡¡and¡¡forced¡¡the¡¡most¡¡similar¡¡elements¡¡into
dose¡¡contact¡£¡¡Wherefore¡¡also¡¡the¡¡various¡¡elements¡¡had¡¡different¡¡places
before¡¡they¡¡were¡¡arranged¡¡so¡¡as¡¡to¡¡form¡¡the¡¡universe¡£¡¡At¡¡first£»¡¡they
were¡¡all¡¡without¡¡reason¡¡and¡¡measure¡£¡¡But¡¡when¡¡the¡¡world¡¡began¡¡to¡¡get
into¡¡order£»¡¡fire¡¡and¡¡water¡¡and¡¡earth¡¡and¡¡air¡¡had¡¡only¡¡certain¡¡faint
traces¡¡of¡¡themselves£»¡¡and¡¡were¡¡altogether¡¡such¡¡as¡¡everything¡¡might
be¡¡expected¡¡to¡¡be¡¡in¡¡the¡¡absence¡¡of¡¡God£»¡¡this£»¡¡I¡¡say£»¡¡was¡¡their¡¡nature
at¡¡that¡¡time£»¡¡and¡¡God¡¡fashioned¡¡them¡¡by¡¡form¡¡and¡¡number¡£¡¡Let¡¡it¡¡be
consistently¡¡maintained¡¡by¡¡us¡¡in¡¡all¡¡that¡¡we¡¡say¡¡that¡¡God¡¡made¡¡them¡¡as
far¡¡as¡¡possible¡¡the¡¡fairest¡¡and¡¡best£»¡¡out¡¡of¡¡things¡¡which¡¡were¡¡not
fair¡¡and¡¡good¡£¡¡And¡¡now¡¡I¡¡will¡¡endeavour¡¡to¡¡show¡¡you¡¡the¡¡disposition
and¡¡generation¡¡of¡¡them¡¡by¡¡an¡¡unaccustomed¡¡argument£»¡¡which¡¡am¡¡compelled
to¡¡use£»¡¡but¡¡I¡¡believe¡¡that¡¡you¡¡will¡¡be¡¡able¡¡to¡¡follow¡¡me£»¡¡for¡¡your
education¡¡has¡¡made¡¡you¡¡familiar¡¡with¡¡the¡¡methods¡¡of¡¡science¡£
¡¡¡¡In¡¡the¡¡first¡¡place£»¡¡then£»¡¡as¡¡is¡¡evident¡¡to¡¡all£»¡¡fire¡¡and¡¡earth¡¡and
water¡¡and¡¡air¡¡are¡¡bodies¡£¡¡And¡¡every¡¡sort¡¡of¡¡body¡¡possesses¡¡solidity£»
and¡¡every¡¡solid¡¡must¡¡necessarily¡¡be¡¡contained¡¡in¡¡planes£»¡¡and¡¡every
plane¡¡rectilinear¡¡figure¡¡is¡¡composed¡¡of¡¡triangles£»¡¡and¡¡all¡¡triangles
are¡¡originally¡¡of¡¡two¡¡kinds£»¡¡both¡¡of¡¡which¡¡are¡¡made¡¡up¡¡of¡¡one¡¡right
and¡¡two¡¡acute¡¡angles£»¡¡one¡¡of¡¡them¡¡has¡¡at¡¡either¡¡end¡¡of¡¡the¡¡base¡¡the
half¡¡of¡¡a¡¡divided¡¡right¡¡angle£»¡¡having¡¡equal¡¡sides£»¡¡while¡¡in¡¡the
other¡¡the¡¡right¡¡angle¡¡is¡¡divided¡¡into¡¡unequal¡¡parts£»¡¡having¡¡unequal
sides¡£¡¡These£»¡¡then£»¡¡proceeding¡¡by¡¡a¡¡combination¡¡of¡¡probability¡¡with
demonstration£»¡¡we¡¡assume¡¡to¡¡be¡¡the¡¡original¡¡elements¡¡of¡¡fire¡¡and¡¡the
other¡¡bodies£»¡¡but¡¡the¡¡principles¡¡which¡¡are¡¡prior¡¡to¡¡these¡¡God¡¡only
knows£»¡¡and¡¡he¡¡of¡¡men¡¡who¡¡is¡¡the¡¡friend¡¡God¡£¡¡And¡¡next¡¡we¡¡have¡¡to
determine¡¡what¡¡are¡¡the¡¡four¡¡most¡¡beautiful¡¡bodies¡¡which¡¡are¡¡unlike¡¡one
another£»¡¡and¡¡of¡¡which¡¡some¡¡are¡¡capable¡¡of¡¡resolution¡¡into¡¡one¡¡another£»
for¡¡having¡¡discovered¡¡thus¡¡much£»¡¡we¡¡shall¡¡know¡¡the¡¡true¡¡origin¡¡of
earth¡¡and¡¡fire¡¡and¡¡of¡¡the¡¡proportionate¡¡and¡¡intermediate¡¡elements¡£¡¡And
then¡¡we¡¡shall¡¡not¡¡be¡¡willing¡¡to¡¡allow¡¡that¡¡there¡¡are¡¡any¡¡distinct
kinds¡¡of¡¡visible¡¡bodies¡¡fairer¡¡than¡¡these¡£¡¡Wherefore¡¡we¡¡must¡¡endeavour
to¡¡construct¡¡the¡¡four¡¡forms¡¡of¡¡bodies¡¡which¡¡excel¡¡in¡¡beauty£»¡¡and
then¡¡we¡¡shall¡¡be¡¡able¡¡to¡¡say¡¡that¡¡we¡¡have¡¡sufficiently¡¡apprehended
their¡¡nature¡£¡¡Now¡¡of¡¡the¡¡two¡¡triangles£»¡¡the¡¡isosceles¡¡has¡¡one¡¡form
only£»¡¡the¡¡scalene¡¡or¡¡unequal¡sided¡¡has¡¡an¡¡infinite¡¡number¡£¡¡Of¡¡the
infinite¡¡forms¡¡we¡¡must¡¡select¡¡the¡¡most¡¡beautiful£»¡¡if¡¡we¡¡are¡¡to¡¡proceed
in¡¡due¡¡order£»¡¡and¡¡any¡¡one¡¡who¡¡can¡¡point¡¡out¡¡a¡¡more¡¡beautiful¡¡form¡¡than
ours¡¡for¡¡the¡¡construction¡¡of¡¡these¡¡bodies£»¡¡shall¡¡carry¡¡off¡¡the¡¡palm£»
not¡¡as¡¡an¡¡enemy£»¡¡but¡¡as¡¡a¡¡friend¡£¡¡Now£»¡¡the¡¡one¡¡which¡¡we¡¡maintain¡¡to¡¡be
the¡¡most¡¡beautiful¡¡of¡¡all¡¡the¡¡many¡¡triangles¡¡£¨and¡¡we¡¡need¡¡not¡¡speak¡¡of
the¡¡others£©¡¡is¡¡that¡¡of¡¡which¡¡the¡¡double¡¡forms¡¡a¡¡third¡¡triangle¡¡which
is¡¡equilateral£»¡¡the¡¡reason¡¡of¡¡this¡¡would¡¡be¡¡long¡¡to¡¡tell£»¡¡he¡¡who
disproves¡¡what¡¡we¡¡are¡¡saying£»¡¡and¡¡shows¡¡that¡¡we¡¡are¡¡mistaken£»¡¡may
claim¡¡a¡¡friendly¡¡victory¡£¡¡Then¡¡let¡¡us¡¡choose¡¡two¡¡triangles£»¡¡out¡¡of
which¡¡fire¡¡and¡¡the¡¡other¡¡elements¡¡have¡¡been¡¡constructed£»¡¡one
isosceles£»¡¡the¡¡other¡¡having¡¡the¡¡square¡¡of¡¡the¡¡longer¡¡side¡¡equal¡¡to
three¡¡times¡¡the¡¡square¡¡of¡¡the¡¡lesser¡¡side¡£
¡¡¡¡Now¡¡is¡¡the¡¡time¡¡to¡¡explain¡¡what¡¡was¡¡before¡¡obscurely¡¡said£º¡¡there¡¡was
an¡¡error¡¡in¡¡imagining¡¡that¡¡all¡¡the¡¡four¡¡elements¡¡might¡¡be¡¡generated¡¡by
and¡¡into¡¡one¡¡another£»¡¡this£»¡¡I¡¡say£»¡¡was¡¡an¡¡erroneous¡¡supposition£»¡¡for
there¡¡are¡¡generated¡¡from¡¡the¡¡triangles¡¡which¡¡we¡¡have¡¡selected¡¡four
kinds¡three¡¡from¡¡the¡¡one¡¡which¡¡has¡¡the¡¡sides¡¡unequal£»¡¡the¡¡fourth¡¡alone
is¡¡framed¡¡out¡¡of¡¡the¡¡isosceles¡¡triangle¡£¡¡Hence¡¡they¡¡cannot¡¡all¡¡be
resolved¡¡into¡¡one¡¡another£»¡¡a¡¡great¡¡number¡¡of¡¡small¡¡bodies¡¡being
combined¡¡into¡¡a¡¡few¡¡large¡¡ones£»¡¡or¡¡the¡¡converse¡£¡¡But¡¡three¡¡of¡¡them¡¡can
be¡¡thus¡¡resolved¡¡and¡¡compounded£»¡¡for¡¡they¡¡all¡¡spring¡¡from¡¡one£»¡¡and
when¡¡the¡¡greater¡¡bodies¡¡are¡¡broken¡¡up£»¡¡many¡¡small¡¡bodies¡¡will¡¡spring
up¡¡out¡¡of¡¡them¡¡and¡¡take¡¡their¡¡own¡¡proper¡¡figures£»¡¡or£»¡¡again£»¡¡when¡¡many
small¡¡bodies¡¡are¡¡dissolved¡¡into¡¡their¡¡triangles£»¡¡if¡¡they¡¡become¡¡one£»
they¡¡will¡¡form¡¡one¡¡large¡¡mass¡¡of¡¡another¡¡kind¡£¡¡So¡¡much¡¡for¡¡their
passage¡¡into¡¡one¡¡another¡£¡¡I¡¡have¡¡now¡¡to¡¡speak¡¡of¡¡their¡¡several
kinds£»¡¡and¡¡show¡¡out¡¡of¡¡what¡¡combinations¡¡of¡¡numbers¡¡each¡¡of¡¡them¡¡was
formed¡£¡¡The¡¡first¡¡will¡¡be¡¡the¡¡simplest¡¡and¡¡smallest¡¡construction£»
and¡¡its¡¡element¡¡is¡¡that¡¡triangle¡¡which¡¡has¡¡its¡¡hypotenuse¡¡twice¡¡the
lesser¡¡side¡£¡¡When¡¡two¡¡such¡¡triangles¡¡are¡¡joined¡¡at¡¡the¡¡diagonal£»¡¡and
this¡¡is¡¡repeated¡¡three¡¡times£»¡¡and¡¡the¡¡triangles¡¡rest¡¡their¡¡diagonals
and¡¡shorter¡¡sides¡¡on¡¡the¡¡same¡¡point¡¡as¡¡a¡¡centre£»¡¡a¡¡single
equilateral¡¡triangle¡¡is¡¡formed¡¡out¡¡of¡¡six¡¡triangles£»¡¡and¡¡four
equilateral¡¡triangles£»¡¡if¡¡put¡¡together£»¡¡make¡¡out¡¡of¡¡every¡¡three
plane¡¡angles¡¡one¡¡solid¡¡angle£»¡¡being¡¡that¡¡which¡¡is¡¡nearest¡¡to¡¡the
most¡¡obtuse¡¡of¡¡plane¡¡angles£»¡¡and¡¡out¡¡of¡¡the¡¡combination¡¡of¡¡these
four¡¡angles¡¡arises¡¡the¡¡first¡¡solid¡¡form¡¡which¡¡distributes¡¡into¡¡equal
and¡¡similar¡¡parts¡¡the¡¡whole¡¡circle¡¡in¡¡which¡¡it¡¡is¡¡inscribed¡£¡¡The
second¡¡species¡¡of¡¡solid¡¡is¡¡formed¡¡out¡¡of¡¡the¡¡same¡¡triangles£»¡¡which
unite¡¡as¡¡eight¡¡equilateral¡¡triangles¡¡and¡¡form¡¡one¡¡solid¡¡angle¡¡out¡¡of
four¡¡plane¡¡angles£»¡¡and¡¡out¡¡of¡¡six¡¡such¡¡angles¡¡the¡¡second¡¡body¡¡is
completed¡£¡¡And¡¡the¡¡third¡¡body¡¡is¡¡made¡¡up¡¡of¡¡120¡¡triangular¡¡elements£»
forming¡¡twelve¡¡solid¡¡angles£»¡¡each¡¡of¡¡them¡¡included¡¡in¡¡five¡¡plane
equilateral¡¡triangles£»¡¡having¡¡altogether¡¡twenty¡¡bases£»¡¡each¡¡of¡¡which
is¡¡an¡¡equilateral¡¡triangle¡£¡¡The¡¡one¡¡element¡¡£§that¡¡is£»¡¡the¡¡triangle
which¡¡has¡¡its¡¡hypotenuse¡¡twice¡¡the¡¡lesser¡¡side£§¡¡having¡¡generated¡¡these
figures£»¡¡generated¡¡no¡¡more£»¡¡but¡¡the¡¡isosceles¡¡triangle¡¡produced¡¡the
fourth¡¡elementary¡¡figure£»¡¡which¡¡is¡¡compounded¡¡of¡¡four¡¡such
triangles£»¡¡joining¡¡their¡¡right¡¡angles¡¡in¡¡a¡¡centre£»¡¡and¡¡forming¡¡one
equilateral¡¡quadrangle¡£¡¡Six¡¡of¡¡these¡¡united¡¡form¡¡eight¡¡solid¡¡angles£»
each¡¡of¡¡which¡¡is¡¡made¡¡by¡¡the¡¡combination¡¡of¡¡three¡¡plane¡¡right
angles£»¡¡the¡¡figure¡¡of¡¡the¡¡body¡¡thus¡¡composed¡¡is¡¡a¡¡cube£»¡¡having¡¡six
plane¡¡quadrangular¡¡equilateral¡¡bases¡£¡¡There¡¡was¡¡yet¡¡a¡¡fifth
combination¡¡which¡¡God¡¡used¡¡in¡¡the¡¡delineation¡¡of¡¡the¡¡universe¡£
¡¡¡¡Now£»¡¡he¡¡who£»¡¡duly¡¡reflecting¡¡on¡¡all¡¡this£»¡¡enquires¡¡whether¡¡the
worlds¡¡are¡¡to¡¡be¡¡regarded¡¡as¡¡indefinite¡¡or¡¡definite¡¡in¡¡number£»¡¡will¡¡be
of¡¡opinion¡¡that¡¡the¡¡notion¡¡of¡¡their¡¡indefiniteness¡¡is¡¡characteristic
of¡¡a¡¡sadly¡¡indefinite¡¡and¡¡ignorant¡¡mind¡£¡¡He£»¡¡however£»¡¡who¡¡raises¡¡the
question¡¡whether¡¡they¡¡are¡¡to¡¡be¡¡truly¡¡regarded¡¡as¡¡one¡¡or¡¡five£»¡¡takes
up¡¡a¡¡more¡¡reasonable¡¡position¡£¡¡Arguing¡¡from¡¡probabilities£»¡¡I¡¡am¡¡of
opinion¡¡that¡¡they¡¡are¡¡one£»¡¡another£»¡¡regarding¡¡the¡¡question¡¡from
another¡¡point¡¡of¡¡view£»¡¡will¡¡be¡¡of¡¡another¡¡mind¡£¡¡But£»¡¡leaving¡¡this
enquiry£»¡¡let¡¡us¡¡proceed¡¡to¡¡distribute¡¡the¡¡elementary¡¡forms£»¡¡which¡¡have
now¡¡been¡¡created¡¡in¡¡idea£»¡¡among¡¡the¡¡four¡¡elements¡£
¡¡¡¡To¡¡earth£»¡¡then£»¡¡let¡¡us¡¡assign¡¡the¡¡cubical¡¡form£»¡¡for¡¡earth¡¡is¡¡the
most¡¡immoveable¡¡of¡¡the¡¡four¡¡and¡¡the¡¡most¡¡plastic¡¡of¡¡all¡¡bodies£»¡¡and
that¡¡which¡¡has¡¡the¡¡most¡¡stable¡¡bases¡¡must¡¡of¡¡necessity¡¡be¡¡of¡¡such¡¡a
nature¡£¡¡Now£»¡¡of¡¡the¡¡triangles¡¡which¡¡we¡¡assumed¡¡at¡¡first£»¡¡that¡¡which
has¡¡two¡¡equal¡¡sides¡¡is¡¡by¡¡nature¡¡more¡¡firmly¡¡based¡¡than¡¡that¡¡which¡¡has
unequal¡¡sides£»¡¡and¡¡of¡¡the¡¡compound¡¡figures¡¡which¡¡are¡¡formed¡¡out¡¡of
either£»¡¡the¡¡plane¡¡equilateral¡¡quadrangle¡¡has¡¡necessarily£»¡¡a¡¡more
stable¡¡basis¡¡than¡¡the¡¡equilateral¡¡triangle£»¡¡both¡¡in¡¡the¡¡whole¡¡and¡¡in
the¡¡parts¡£¡¡Wherefore£»¡¡in¡¡assigning¡¡this¡¡figure¡¡to¡¡earth£»¡¡we¡¡adhere
to¡¡probability£»¡¡and¡¡to¡¡water¡¡we¡¡assign¡¡that¡¡one¡¡of¡¡the¡¡remaining¡¡forms
which¡¡is¡¡the¡¡least¡¡moveable£»¡¡and¡¡the¡¡most¡¡moveable¡¡of¡¡them¡¡to¡¡fire£»
and¡¡to¡¡air¡¡that¡¡which¡¡is¡¡intermediate¡£¡¡Also¡¡we¡¡assign¡¡the¡¡smallest
body¡¡to¡¡fire£»¡¡and¡¡the¡¡greatest¡¡to¡¡water£»¡¡and¡¡the¡¡intermediate¡¡in
size¡¡to¡¡air£»¡¡and£»¡¡again£»¡¡the¡¡acutest¡¡body¡¡to¡¡fire£»¡¡and¡¡the¡¡next¡¡in
acuteness¡¡to£»¡¡air£»¡¡and¡¡the¡¡third¡¡to¡¡water¡£¡¡Of¡¡all¡¡these¡¡elements£»¡¡that
which¡¡has¡¡the¡¡fewest¡¡bases¡¡must¡¡necessarily¡¡be¡¡the¡¡most¡¡moveable£»
for¡¡it¡¡must¡¡be¡¡the¡¡acutest¡¡and¡¡most¡¡penetrating¡¡in¡¡every¡¡way£»¡¡and¡¡also
the¡¡lightest¡¡as¡¡being¡¡composed¡¡of¡¡the¡¡smallest¡¡number¡¡of¡¡similar
particles£º¡¡and¡¡the¡¡second¡¡body¡¡has¡¡similar¡¡properties¡¡in¡¡a¡¡second
degree£»¡¡and¡¡the¡¡third¡¡body¡¡in¡¡the¡¡third¡¡degree¡£¡¡Let¡¡it¡¡be¡¡agreed£»
then£»¡¡both¡¡according¡¡to¡¡strict¡¡reason¡¡and¡¡according¡¡to¡¡probability£»
that¡¡the¡¡pyramid¡¡is¡¡the¡¡solid¡¡which¡¡is¡¡the¡¡original¡¡element¡¡and¡¡seed
of¡¡fire£»¡¡and¡¡let¡¡us¡¡assign¡¡the¡¡element¡¡which¡¡was¡¡next¡¡in¡¡the¡¡order
of¡¡generation¡¡to¡¡air£»¡¡and¡¡the¡¡third¡¡to¡¡water¡£¡¡We¡¡must¡¡imagine¡¡all
these¡¡to¡¡be¡¡so¡¡small¡¡that¡¡no¡¡single¡¡particle¡¡of¡¡any¡¡of¡¡the¡¡four
kinds¡¡is¡¡seen¡¡by¡¡us¡¡on¡¡account¡¡of¡¡their¡¡smallness£º¡¡but¡¡when¡¡many¡¡of
them¡¡are¡¡collected¡¡together¡¡their¡¡aggregates¡¡are¡¡seen¡£¡¡And¡¡the
ratios¡¡of¡¡their¡¡numbers£»¡¡motions£»¡¡and¡¡other¡¡properties£»¡¡everywhere
God£»¡¡as¡¡far¡¡as¡¡necessity¡¡allowed¡¡or¡¡gave¡¡consent£»¡¡has¡¡exactly
perfected£»¡¡and¡¡harmonised¡¡in¡¡due¡¡proportion¡£
¡¡¡¡From¡¡all¡¡that¡¡we¡¡have¡¡just¡¡been¡¡sayi