《科学发现的逻辑 作者:波珀》

下载本书

添加书签

科学发现的逻辑 作者:波珀- 第29部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
证度因此可比普遍性程度较低(所以可证伪度也较低)的理论的验证度更大。同样,精确度更高的理论比精确度较低的理论可得到更好的验证。为什么我们不把一个正的验证度给予手相者和占卜者的典型预言的一个理由是他们的预测是如此小心谨慎和不精确,以致这些预言是正确的逻辑概率极高。并且如果我们被告知说,一些更为精确、因而逻辑上不那么可几的这类预测曾经是成功的,那么一般说来,我们怀疑的往往不是它们的成功,而是它们所谓的不可几性:因为我们倾向于认为这些预言是不可验证的,在这些情况下我们也往往从它们低的验证度推论到它们低的可检验度。

  如果我们把我的这些观点同蕴涵在(归纳)概率逻辑中的观点加以比较,我们就会得到一个真正值得注意的结果。根据我的观点,一个理论的可验证度——以及一个真实上已通过严格检验的理论的验证度,可以说均与它的逻辑概率处于反比关系中;因为它们都随它的可检验性和简单性程度而增加。但是概率逻辑蕴涵的观点正好是这种观点的对立面。这种观点的支持者使一个假说的概率的增加与它的逻辑概率成直接比例——虽然无疑他们想要他们的“假说概率”所要代表的与我试图用“验证度”所表明的完全是同一件事。

  在那些以这种方法论证的人中间是Keynes用了“先验概率”一词来指我称之为“逻辑概率”的东西(参见第113页注)。他就一个“概括”g(即一个(假说)以及“条件”或前件或条件从句φ和“结论”或后件或结论句f作了下列完全确切的评论:“条件φ内容越丰富和结论f内容越贫乏,我们赋予概括g的先验“概率就越大。这个概率随着φ中的每一次增加而增加,它随着f中的每一次增加而减少。”正如我说的,这完全正确,即使Keynes并没有在他称之为“某一概括的概率”——与这里被称为“假说概率”的相一致——与它们的“先验概率”之间作出明确的区分。虽然如此,Keynes用他的“概率”所指的与我用“验证”所指的是一回事,这一点可从他的“概率”随验证实例数目以及(最为重要的)也随实例之间多样性的增加而增加中看出。(但是Keynes忽视了这一事实:其验证实例属于各种各样应用领域的理论常常相应地具有高度的普遍性。因而他的两个要求,即获得高的概率——最小可能的普遍性和验证实例最大可能的多样性——一般是不相容的。)

  用我的术语来表达,Keynes的理论蕴涵着验证(或假说概率)随可检验性而降低。他对归纳逻辑的信仰引导他达到这个观点。因为使科学假说尽可能确定无疑,正是归纳逻辑的倾向。只有在种种假说能被经验证明为正确时才赋予它们以科学意义。只是因为理论和经验陈述之间密切的逻辑接近,一个理论才被认为科学上有价值。但是这不过意味着理论的内容必须尽可能少地超越经验上确定的。这个观点与否认预测的价值有密切的联系。Keynes写道:“预测的独特优点,……完全是想象性的。被考察的实例的数目和它们之间的类似是基本要点,碰巧在检查它们之前还是之后提出某一特定假说的问题是完全无关的。”Keynes在援引“先验地提出的”——即我们在对它们已有充分的支持以前根据归纳的理由提出的——假说时,写道:“……如果它不过是一种猜测,在它之前有一些事例或所有的事例都证实它,这一饶悻事实对它的价值丝毫不增添什么。”这种预测观点当然是前后一贯的。但是它使人们感到奇怪为什么我们总是要进行概括。有什么可能的理由要建立所有这些理论和假说?归纳逻辑的立场使这些活动成为完全不可理解的。如果我们评价最高的是可得到的最可靠的知识——并且如果预测本身对验证无所贡献——,那么为什么我们依然不满足于我们的基础陈述?

  引起十分类似的问题的另一个观点是Kaila的观点。虽然我认为正是简单的理论,以及那些很少利用辅助假说(参阅第46节)的理论能得到很好的验证,正因为它们的逻辑不可几性,Kaila根据类似Keynes的理由正好以相反的方式解释这种情况。他也看到我们常常把一个高概率(用我们的话说,高的“假说概率”)赋予简单的理论,尤其是那些需要很少辅助假说的理论。但是他的理由是与我的对立的。他不像我所做的那样把一个高概率赋予这些理论,因为它们是可严格检验的,或逻辑上不可几的;那就是说因为它们可以说是先验地具有与基础陈述矛盾的许多机会。相反地,他把高概率赋予具有很少辅助假说的简单理论,是因为他认为由很少假说组成的系统先验地比由许多假说组成的系统与实在发生矛盾的机会更少。人们在这里又一次不明白为什么老是要费神去建立这些冒险的理论。如果我们怕与实在发生冲突,为什么通过作出断言把理论招来?我们最安全的方针是采取一个没有任何假说的系统。〔“言多必失,不说为佳”]

  我自己的规则要求所用的辅助假说要尽可能地少(“利用假说的节约原理”)与Kaila的考虑毫无共同之处,我对仅仅减少我们陈述的数目不感兴趣:我感兴趣的是它们在高度可检验性意义上的简单性。正是这种兴趣一方面导致我的应尽可能少地利用辅助假说的规则,另一方面导致我的公理——最基本的假说——数目应尽量减少的要求。因为这后一点出于这一要求:应选取普遍性水平高的陈述,以及由许多公理组成的系统如有可能应从具有更少“公理”和普遍性水平更高的系统中演绎出来(因此用后一系统解释)。

  84.论关于“真的”和“被验证的”概念的使用

  在这里概述的科学逻辑学中,避免使用“真的”和“假的”概念是可能的。它们的地位可由关于可推导性关系的逻辑考虑来代替。因此我们不一定说:“假如理论t和基本陈述b是真的,预测p就是真的。”我们可以说,陈述p是从t和b(非矛盾的)合取中得出的结论。一个理论的证伪可用同样方法描述。我们不一定说这理论是“假的”,但我们可以说它被一组公认的基础陈述反驳。关于基础陈述我们也不一定说,它们是“真的”或“假的”,因为我们可以把它们的得到承认解释为协约决定的结果,而公认的陈述是这种决定的结果。

  这当然不是说,我们禁止使用“真的”或“假的”概念,或它们的使用造成了任何特殊的困难。我们可以避免它们这一事实本身表明它们不可能引起任何新的基本问题。“真的”和“假的”概念的使用十分类似像“重言”、“矛盾”、“合取”、“蕴涵”和诸如此类这些概念的使用。这些是非经验概念、逻辑概念。它们描述或评价一个陈述,不考虑经验世界中的任何变化。虽然我们假定物理对象(Lewin意义上的“发生同一的[genidentical]对象”)随时间的推移而变化,我们仍然决定以这种方式使用这些逻辑谓词,因而陈述的逻辑性质成为无时间性的了:如果一个陈述是重言的,那么它永远是重言的。我们也把这同样的无时间性赋予“真的”和“假的”概念,这与日常的用法是一致的。说一个陈述昨天是完全真的,但今天变成假的,这不是日常的用法。如果昨天我们评价一个陈述是真的,今天评价它是假的,那么我们今天不言而喻地断言我们昨天错了;甚至昨天这个陈述也是假的——无时间性地假的——但我们错误地“把它当作真的”。

  这里人们能十分清楚地看到真理和验证之间的不同。评价一个陈述得到验证或没有得到验证也是一个逻辑评价,因此也是没有时间性的;因为它断言在某一理论系统和某种公认的基础陈述系统之间有一定的逻辑关系。但我们谈到一个陈述时决不能简单地说它本身或自己“得到验证”(以我们说它是“真的”这种方式)。我们只能说它就某种基础陈述系统而言得到验证——直到某一特定时刻以前得到承认的系统。“一个理论直到昨天得到的验证”与“一个理论直到今天得到的验证”在逻辑上不是等同的。因此我们必须给每一个验证评价添上一个下标——表征验证与之有关的基础陈述系统的下标。(例如用它得到承认的日期)。

  所以验证不是一个“真值”;即它不能与“真的”和“假的”概念(它们没有时间标志)处于同等的地位;因为对于同一陈述可以有任何数目的不同的验证值,这些值确实都可能同时是“正确的”或“真的”。因为它们是一些可从理论和在不同时期承认的不同组基础陈述中合乎逻辑地推导出来的值。

  上述的评论也可帮助阐明我的观点和实用主义者的观点之间的对立,他们建议用一个理论的成功——因而用它的有用性,或它的确证或它的验证来定义“真理”。如果它们的意图只是要断言一个理论成功的逻辑评价不过是它的验证评价,那我可以同意。但是我认为把验证概念同真理概念等同起来远不是“有用的”。这在日常用法中也是要避免的。因为人们谈到一个理论时完全可以说,它迄今根本末被验证,或它仍未被验证。但我们一般不应说一个理论迄今不是真的,或它仍然是假的。

  85.科学的道路

  人们在物理学进化中可以辨认出某种总方向——从普遍性水平较低的理论到水平较高的理论的方向。这通常被称为“归纳”方向;也许会认为物理学沿这个“归纳”方向进展这个事实可被用作支持归纳方法的一个论据。

  然而沿归纳方向进展不一定由归纳推理序列组成。实际上我们业已表明它可用完全不同的术语--用可检验性和可验证性程度——来解释。因为一个已得到充分验证的理论只能被一个普遍性水平更高的理论来代替;即被一个可更好检验的、并且此外包含旧的、得到充分验证的理论(或至少很接近于它)的理论来代替,所以把那种趋向——向普遍性水平越来越高的理论进展——描述为“拟归纳”趋向更好。

  这种拟归纳过程应设想如下。提出具有某种普遍性水平的理论,并用演绎法检验;在这以后,又提出普遍性水平更高的理论、又借助具有以前水平的普遍性的理论检验,如此等等。检验方法是不变地根据从较高水平到较低水平的演绎推理;另一方面普遍性水平按时间次序通过从较低水平到较高水平而达到。

  也许提出这个问题:“为什么不直接发明普遍性水平最高的理论!为什么等待这种拟归纳进化?也许这不就是因为毕竟有归纳要素包含在其中吗?”我不认为如此。具有一切可能的普遍性水平的意见——推测或理论——一次又一次被提出。那些普遍性水平太高的理论(即离开当时可检验的科学达到的水平太远)也许产生一种“形而上学系统”。在这种情况下,即使陈述应该可以从这个系统中演绎出来(或只是不完全地推导出来,例如在Spinoza系统的情况下),这些陈述属于流行的科学系统,在其中也不会有任何新的可检验陈述;这意味着没有任何判决性实验能被设计出来检验所说的系统。如果在另一方面,可以为它设计一个判决性实验,那么系统作为第一个近似将包含某个得到充分验证的理论。并且同时也包含某种新的东西——能够接受检验的东西。因此,该系统当然不是“形而上学的”。在这种情况下,可把所说的系统看作为科学拟归纳进化上的新进展。这说明为什么一般只是由那些提出来试图应付当时问题境况,即当时的困难、矛盾和证伪的理论来建立与当时科学的联系。在对这些困难提出一种解决办法时,这些理论可指出通向判决性实验的道路。

  为了获得一个这种拟归纳科学进化的图景或模型,可把种种思想和假说看作为悬浮在液体中的粒子。可检验的科学是这些粒子在容器底下的沉淀物:它们是分(普遍性的)层沉淀的。沉积的厚度随这些层次数目而增长,每一个新的层次相当于比在它下面的那些理论更为普遍的理论。这个过程的结果是以前在较高的形而上学区漂浮的思想有时可因科学的增长而被触及,因而与它接触而沉淀。这些思想的例子是原子论;单一物理“本原”或最终元素(其他东西由此衍生出来)的思想;地动理论(被Bacon认为虚构而反对);古老的光微粒说;它的液体理论(作为金属传导的电气假说而复活)。所有这些形而上学概念和思想,即使在其最初的形式,也许已帮助把秩序引入人的世界图景中,并且在一些情况下也许甚至已导致富有成效的预测。然而这样的一个思想获得科学的地位,仅当它存在于可证伪的形式时;那就是说,仅当用经验在它与某个对立理论之间作出抉择成为可能时。

  我的研究已探索了本书开头所采取的一些决定和约定——尤其是划界标准——的种种结果。我们在回顾时可以试图最后全面地看一看已经呈现的科学和科学发现的图景(我在这里想到的不是作为一种生物学现象,作为一种适应工具,或作为一种迂迴的生产方法的科学图景:我想的是它的认识论方面)。

  科学不是一个确定的或既成的陈述的系统;它也不是一个朝着一个终极状态稳定前进的系统。我们的科学不是绝对的知识(episteme):它决不能自称已达到真理,甚或像概率一样的真理的替代物。

  然而科学具有的价值不只是生物学的生存价值。它不仅是一个有用的工具。虽然它既不能达到真理,也不能达到概率,追求知识和探索真理仍然是科学发现最有力的动机。

  我们不知道:我们只能猜测。并且我们的猜测受到对我们能够揭示——发现的定律、规律性的非科学的、形而上学的(尽管在生物学上可以说明的)信仰指导。像Bacon一样,我们可把我们自己的当代科学——“人们现在通常应用于自然界的推理方法”——描述为由“轻率的和过早的预感”组成的,描述为“偏见”。
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架