《科学发现的逻辑 作者:波珀》

下载本书

添加书签

科学发现的逻辑 作者:波珀- 第6部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!

  我相信,这是为什么一个严密的系统的形式被作为目的来追求的理由。这种形式是所谓“公理化系统”——例如,Hilber能够赋予理论物理学某些分支这种形式。人们试图收集所有必需的假定(但是不多于必需的)来形成系统的顶点。它们通常被称作“公理’(或“公设”、“原始命题”;在这里使用的“公理”这个术语,并不意味着认为它是真理)。公理是这样来选择的:所有其他属于这个理论系统的陈述都能用纯逻辑的或数学的变换从这些公理中推导出来。

  一个理论系统可以说是公理化了,假如已表述的一组陈述,即公理,满足下列四个基本的要求。(a)公理系统必须是没有矛盾的(不论是自相矛盾还是相互矛盾)。这等于要求,不是每一个任意选择的陈述可以从这系统中推演出来。(b)这系统必须是独立的,即它不准包含任何可以从其他公理中推演出来的公理(换句话说,只有一个陈述不能从系统的其余部分中推演出来,它才能被称为一个公理)。这两个条件是关于公理系统本身的;至于对公理系统和理论的主体的关系来说,公理必须是(c)充足的,足以使所有属于要公理化的那个理论的陈述得以推演出来;为了同样的目的,必须是(d)必要的;这意味着它不应包含多余的假定。

  在这样的公理化的理论里,考察这系统的各个部分的相互依赖性是可能的。例如,我们可以考察理论的一定部分是否可以从公理的某一部分中推演出来。这种考察(在第63和64、75…77节里对此将要更多地谈到)对于可证伪性问题有重要的关系。它们使我们弄清楚为什么一个逻辑上演绎出的陈述的证伪有时不影响整个系统,而只是影响这系统的某个部分,这个部分因此可被看作已被证伪。这是可能的,因为虽然物理学理论一般并没有完全公理化,但是这理论的各部分之间的联系可以很清楚,使得我们能够判定它的哪一个子系统受到某一特定的起征伪作用的观察所影响。

  17.公理系统解释的几种可能性

  在这里不讨论古典惟理论的观点:某些系统的“公理”,比如Euclid几何学的公理,必须被看作直接地或直觉地确定无疑的,或不证自明的。我只是表示我不同意这个观点。我认为对于任何公理系统的两个不同的解释是可以接受的。公理或者可以被看作是(i)约定,或者可以被看作是(ii)经验的或科学的假说。

  (i)假如公理被看作约定,那么它们就限制公理所引进的基本观念(或原始术语或原始概念)的用法或意义;它们决定关于这些基本观念能说什么和不能说什么。有时公理被描述为它们引进的观念的“隐定义”(implicit definitions)。这个看法也许能用公理系统和(自指的和可解的)方程式系统之间的类比来说明。

  在方程式系统中出现的“未知数”(或变量)的可允许值是以某种方式由这方程式系统所决定的。即使方程式系统不足以提供惟一的解,它也不允许每一个可设想的数值组合代人“未知数”(变量)。更确切地说,方程式系统认为一定的数值组合或数值系统是可接受的,其他的则是不可接受的;它将可接受的数值系统类和不可接受的数值系统类区别开来。同样,概念系统可以用称作“陈述方程式’的方法,分为可以接受的和不可接受的。陈述方程式是从命题函项或陈述函项(参看第14节注6)中得出的;这是不完全的陈述,在其中有一个或更多的“空位”出现。这种命题函项或陈述函项的两个例子是:“元素x的同位素具有原子量65”,“x+y=12”。用一定的值代入这些空位,x和y,每一个这种陈述函项就变换成陈述。按照代入的值(或值的组合),得出的陈述将或者是真的,或者是假的。例如在第一个例子中,用“铜”或“锌”代人x产生一个真的陈述,而代入其他字得出假的陈述。假如我们对某个陈述函项决定只允许那些能使这函项变成真陈述的值代人,我们就得到了我所说的“陈述方程式”。用这种陈述方程式,我们定义某一确定的可接受的值系统类,即那些能满足这一方程式的值系统类。与数学方程式的类同是明显的。如果我们的第二个例子不解释为陈述函数,而是解释为陈述方程式,那么这就变成一个普通(数学)意义的方程式。

  因为公理系统的未定义的基本观念或原始术语能被看作空位,公理系统开始时可以被作为陈述函项系统来处理。但是,假如我们决定只有那些能满足这系统的值系统或值组合可以代人,那么它就变成一个陈述方程式系统。它本身隐含地定义了一个(可接受的)概念系统类。每一个满足一个公理系统的概念系统可以被称作“这个公理系统的模型。”

  公理系统解释为约定系统或隐定义系统,也可以表述为:它等于只允许模型可作为代人物这样一种决定。但是,如果代入一个模型,那么结果就是一个分析陈述系统(因为它是因约定而成为真的)。因此用这样的方法解释的公理系统不能被看作(在我们意义上的)经验的或科学的假说系统,因为它不能因它的推断的被证伪而被反驳;因为这些推断也必定是分析的陈述。

  (ii)可以问:那么,公理系统怎样才能被解释为经验的或科学的假说系统呢?通常的看法是,在公理系统里出现的原始术语不能看作被下了隐定义的,而应看作“逻辑外的常数”。例如:出现在每一个几何学公理系统里的概念“直线”和“点”,可以被解释为“光线”和“光线的交叉点”。人们认为,用这样的方法,公理系统的陈述就变成关于经验对象的陈述,也就是说,变成综合陈述。

  初看起来,这个观点似乎能使人完全满意。然而这导致和经验基础问题相联系的困难。因为,什么是定义一个概念的经验方法是很不清楚的,人们习惯地谈到“直指定义”(“ostensive definitions”),它的意思就是给予概念以一定的经验定义,把这个概念和属于实在世界的一定对象联系起来。因此,它被认为这些对象的符号。但是,本来应该很清楚,只有个别名称或概念才能用下列方法来确定:直接指示“实在的对象”——比方说指向一定的物体,同时说出一个名称,或者贴上一个带有一个名称的标签,等等。然而,在公理系统里使用的概念应该是普遍名称,而普遍名称是不能用经验的表示、指向等等来定义的。假如可以下定义的话,它们只能用其他普遍名称下显定义(explicitly defined);否则,它们只能仍是未定义的概念。所以,有些普遍名称必定仍然是未定义的,这是完全不可避免的。困难就在这里,因为,这些未定义的概念总是可以被用于非经验的意义(i),就是说,好像它们是被下了隐定义的概念。然而,这种用法必定不可避免地破坏了系统的经验性质。我相信,这个困难只能用方法论决定的办法来克服。为此,我将采用一条规则:不要这样使用未定义的概念,仿佛它们被下了隐定义似的(这点将要在下面第20节中谈到)。

  在这里,我也许可以补充说明:一个公理系统(例如几何学)的原始概念通常是可能和另一个系统(例如,物理学)的概念相联系的,或者为后者所解释。在某一门科学的进化过程中,当一个陈述系统正在用一个新的(更加一般的)假说系统来解释的时候,上述可能性特别重要。从这个新的假说系统中,不但可以演绎出属于第一个系统的陈述,而且可以演绎出属于其他系统的陈述。在这样的情况下,用原来在某个旧的系统中使用的概念来定义新系统的基本概念是可能的。

  18.普遍性水平否定后件假言推理

  在一个理论系统内,我们可以区别属于各种普遍性水平的陈述。普遍性水平最高的陈述是公理;较低水平的陈述能由它们演绎出来。较高水平的经验陈述相对于从它们演绎出来的较低水平的陈述来说,总是具有假说的性质:它们能为这些不那么普遍的陈述之被证伪所证优。但是,在任何假说的演绎系统中,这些不那么普遍的陈述本身仍然是(在这里所理解的意义上)严格全称陈述。因此,它们也必定具有假说的性质——在较低水平的全称陈述的情况下,这点往往被忽视。例如,Mach称Fourier的热传导理论是“物理学的模型理论”,他有一个古怪的理由:“这个理论的基础不是一个假说,而是一个观察事实。”然而,Mach用下列陈述来描述他所指的这个“观察事实”:“……假定温度差别很小,温度差消除的速度正比于温度差本身。”这是一个全陈述,它的假说性质应该说是够明显的。

  我甚至要说,某些单称陈述也是假说的,因为(依靠一个理论系统的帮助)可以从它们演绎出结论,使这些结论的被证优可以证伪这些单称陈述。

  这里提到的证伪的推理方式——用这个方式,一个结论的被证协必然得出这结论从之演绎出来的那个系统的被证伪——是古典逻辑的否定后件假言推理。这个方法可以描述如下:

  设P是一个陈述系统t的一个结论,这系统可由理论和初始条件(为了简便的缘故,我不区别这二者)组成。然后我们可以用符号“t→P”表示,P可从t推导出的关系(分析蕴涵),“t→P”读作:“P从t得出”。假定P是假的,我们可写作“”,读作“非P”。已知可演绎关系t→和假定,我们能推出(读作“非t”);即我们认为t已被证伪。如果我们用一个点放在代表两个陈述的符号之间来表示这两个陈述的合取(同时断言),我们也可把证伪推理写作:[(t→P)·]→,读作:“如果P可从t推导出,而且如果P是假的,那么t也是假的。”

  用这个推理方式我们证伪了整个系统(理论和初始条件),这个系统是演绎出陈述P,即演绎出被证协的陈述所必需的。因此,不能断言系统中的任何一个陈述,说它特别受到或不受到证伪的影响。只有当P对系统的某个部分是独立的,我们才能说:这个部分不受证伪的影响。与此相关的是下列可能性:在某种情况下,也许考虑到普遍性的水平,我们可以把证伪归之于某个确定的假说——比如,一个新引进的假说。假如一个得到充分验证并继续得到进一步验证的理论,可从一个更高水平的新假说演绎出来因而获得解释,上述情况就可以发生。必须努力用它的某些尚未得到检验的推断来检验这个新假说。如果任何这些推断被证伪,那么就完全可以把证伪单独归之于这个新假说。然后,我们将寻找其他高水平的概括来代替它,但是我们不必认为那个概括性较低的旧系统已被证伪(参看第85节关于“拟归纳”的论述)。





科学发现的逻辑第四章 可证伪性



第四章 可证伪性

  关于是否存在可证伪的单称陈述(或者“基础陈述”)的问题,将在以后考察。这里我假定对这个问题采取一个肯定的回答;我将考察我的划界标准可以在何种程度上应用到理论系统上来——假如可以利用的话。对一种通常称作“约定主义”的立场进行批判性讨论,首先会提出若干方法问题,我将采取一定的方法论决定来对付这些问题,其次,我将试图表征那些可证伪的理论系统的逻辑性质——可证伪的,即假如采用我们的方法论决定的话。

  19.约定主义的若干反对意见

  对于我采取可证伪性作为我们判定一个理论系统是否属于经验科学的标准的建议,一定会有反对意见。例如,那些受约定主义这一学派影响的人们就会提出反对意见。在第6、11、17节里我们已经接触到某些这种反对意见,现在要稍微详细一些加以考察。

  约定主义哲学的根源似乎是,对物理定律中显示出来的世界朴素优美的简单性感到惊奇。如果我们不得不与实在论者一起相信,自然定律给我们揭示了在外表丰富的多样性下面世界内在的结构的简单性,约定主义者却似乎感到,这种简单性是不可能理解的,实在是神秘的。Kant的唯心主义没法解释这种简单性,说:是我们自己的知性把它的定律赋予自然。同样地,甚至更加大胆地、约定主义者把这个简单性看作我们自己的创造。然而,他们认为,这种简单性并不是由于我们的知性把定律加于自然,因而使得自然成为简单的;因为他们并不相信自然是简单的。仅仅“自然定律”是简单的。约定主义者还认为,这些自然定律是我们自己的自由创造,我们的发明,我们的任意决定和约定。对于约定主义者来说,理论自然科学不是自然界的图景,只是逻辑建构。决定这种建构的不是世界的性质;相反,正是这种建构决定着一个人工世界的性质:一个概念的世界,这些概念由我们选择的自然定律隐含给予地定义。科学所谈论的只是这个世界。

  按照这个约定主义的观点,自然定律不能为观察所证伪;因为需要这些自然定律来决定观察,特别是科学的测量是什么。正是这些我们制定的定律为钟的调节和所谓“刚性”量杆的校正形成必不可少的基础。仅当用这些工具来测量的运动满足我们决定采用的力学公理时,才能称钟是“准确的”,量杆是“刚性的”。

  约定主义哲学帮助我们澄清理论和实验的关系是很值得称赞的。它认识到,在进行和解释我们的科学实验时,按照约定和演绎推理设计的我们的动作和操作所起作用的重要性,这种重要性归纳主义者是很少注意到的。我认为约定主义是一种独立完整的可加以辩护的系统。想从其中发现矛盾大概不能得到成功。但是不管所有这些,我发觉它是完全不能接受的。它的基础是一种关于科学、关于科学的目的和功能的观念,这种观念是和我的观念完全不同的。我并不向科学要求任何最终的确定性(因此我也没有得到),而约定主义者在科学中追求“基于最终根据的知识系统”,这是Din
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架