substitution¡¡of¡¡an¡¡indefinite¡¡for¡¡a¡¡particular¡¡affirmative¡¡will¡¡effect
the¡¡same¡¡syllogism¡¡in¡¡all¡¡the¡¡figures¡£
¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡all¡¡the¡¡imperfect¡¡syllogisms¡¡are¡¡made¡¡perfect
by¡¡means¡¡of¡¡the¡¡first¡¡figure¡£¡¡For¡¡all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion
either¡¡ostensively¡¡or¡¡per¡¡impossibile¡£¡¡In¡¡both¡¡ways¡¡the¡¡first¡¡figure
is¡¡formed£º¡¡if¡¡they¡¡are¡¡made¡¡perfect¡¡ostensively£»¡¡because¡¡£¨as¡¡we¡¡saw£©
all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion¡¡by¡¡means¡¡of¡¡conversion£»¡¡and¡¡conversion
produces¡¡the¡¡first¡¡figure£º¡¡if¡¡they¡¡are¡¡proved¡¡per¡¡impossibile£»¡¡because
on¡¡the¡¡assumption¡¡of¡¡the¡¡false¡¡statement¡¡the¡¡syllogism¡¡comes¡¡about
by¡¡means¡¡of¡¡the¡¡first¡¡figure£»¡¡e¡£g¡£¡¡in¡¡the¡¡last¡¡figure£»¡¡if¡¡A¡¡and¡¡B
belong¡¡to¡¡all¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for¡¡if¡¡A
belonged¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡would¡¡belong¡¡to¡¡no¡¡C£º
but¡¡£¨as¡¡we¡¡stated£©¡¡it¡¡belongs¡¡to¡¡all¡¡C¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡rest¡£
¡¡¡¡It¡¡is¡¡possible¡¡also¡¡to¡¡reduce¡¡all¡¡syllogisms¡¡to¡¡the¡¡universal
syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Those¡¡in¡¡the¡¡second¡¡figure¡¡are¡¡clearly
made¡¡perfect¡¡by¡¡these£»¡¡though¡¡not¡¡all¡¡in¡¡the¡¡same¡¡way£»¡¡the¡¡universal
syllogisms¡¡are¡¡made¡¡perfect¡¡by¡¡converting¡¡the¡¡negative¡¡premiss£»¡¡each
of¡¡the¡¡particular¡¡syllogisms¡¡by¡¡reductio¡¡ad¡¡impossibile¡£¡¡In¡¡the
first¡¡figure¡¡particular¡¡syllogisms¡¡are¡¡indeed¡¡made¡¡perfect¡¡by
themselves£»¡¡but¡¡it¡¡is¡¡possible¡¡also¡¡to¡¡prove¡¡them¡¡by¡¡means¡¡of¡¡the
second¡¡figure£»¡¡reducing¡¡them¡¡ad¡¡impossibile£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to
all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡£¡¡For¡¡if¡¡it
belonged¡¡to¡¡no¡¡C£»¡¡and¡¡belongs¡¡to¡¡all¡¡B£»¡¡then¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡C£º
this¡¡we¡¡know¡¡by¡¡means¡¡of¡¡the¡¡second¡¡figure¡£¡¡Similarly¡¡also
demonstration¡¡will¡¡be¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡the¡¡negative¡£¡¡For¡¡if¡¡A
belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£º
for¡¡if¡¡it¡¡belonged¡¡to¡¡all¡¡C£»¡¡and¡¡belongs¡¡to¡¡no¡¡B£»¡¡then¡¡B¡¡will¡¡belong
to¡¡no¡¡C£º¡¡and¡¡this¡¡£¨as¡¡we¡¡saw£©¡¡is¡¡the¡¡middle¡¡figure¡£¡¡Consequently£»
since¡¡all¡¡syllogisms¡¡in¡¡the¡¡middle¡¡figure¡¡can¡¡be¡¡reduced¡¡to
universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£»¡¡and¡¡since¡¡particular
syllogisms¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡reduced¡¡to¡¡syllogisms¡¡in¡¡the
middle¡¡figure£»¡¡it¡¡is¡¡clear¡¡that¡¡particular¡¡syllogisms¡¡can¡¡be¡¡reduced
to¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Syllogisms¡¡in¡¡the¡¡third
figure£»¡¡if¡¡the¡¡terms¡¡are¡¡universal£»¡¡are¡¡directly¡¡made¡¡perfect¡¡by¡¡means
of¡¡those¡¡syllogisms£»¡¡but£»¡¡when¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡particular£»
by¡¡means¡¡of¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£º¡¡and¡¡these
£¨we¡¡have¡¡seen£©¡¡may¡¡be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first
figure£º¡¡consequently¡¡also¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡third
figure¡¡may¡¡be¡¡so¡¡reduced¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡all¡¡syllogisms¡¡may
be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£
¡¡¡¡We¡¡have¡¡stated¡¡then¡¡how¡¡syllogisms¡¡which¡¡prove¡¡that¡¡something
belongs¡¡or¡¡does¡¡not¡¡belong¡¡to¡¡something¡¡else¡¡are¡¡constituted£»¡¡both¡¡how
syllogisms¡¡of¡¡the¡¡same¡¡figure¡¡are¡¡constituted¡¡in¡¡themselves£»¡¡and¡¡how
syllogisms¡¡of¡¡different¡¡figures¡¡are¡¡related¡¡to¡¡one¡¡another¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8
¡¡¡¡Since¡¡there¡¡is¡¡a¡¡difference¡¡according¡¡as¡¡something¡¡belongs£»
necessarily¡¡belongs£»¡¡or¡¡may¡¡belong¡¡to¡¡something¡¡else¡¡£¨for¡¡many
things¡¡belong¡¡indeed£»¡¡but¡¡not¡¡necessarily£»¡¡others¡¡neither
necessarily¡¡nor¡¡indeed¡¡at¡¡all£»¡¡but¡¡it¡¡is¡¡possible¡¡for¡¡them¡¡to¡¡belong£©£»
it¡¡is¡¡clear¡¡that¡¡there¡¡will¡¡be¡¡different¡¡syllogisms¡¡to¡¡prove¡¡each¡¡of
these¡¡relations£»¡¡and¡¡syllogisms¡¡with¡¡differently¡¡related¡¡terms£»¡¡one
syllogism¡¡concluding¡¡from¡¡what¡¡is¡¡necessary£»¡¡another¡¡from¡¡what¡¡is£»¡¡a
third¡¡from¡¡what¡¡is¡¡possible¡£
¡¡¡¡There¡¡is¡¡hardly¡¡any¡¡difference¡¡between¡¡syllogisms¡¡from¡¡necessary
premisses¡¡and¡¡syllogisms¡¡from¡¡premisses¡¡which¡¡merely¡¡assert¡£¡¡When
the¡¡terms¡¡are¡¡put¡¡in¡¡the¡¡same¡¡way£»¡¡then£»¡¡whether¡¡something¡¡belongs
or¡¡necessarily¡¡belongs¡¡£¨or¡¡does¡¡not¡¡belong£©¡¡to¡¡something¡¡else£»¡¡a
syllogism¡¡will¡¡or¡¡will¡¡not¡¡result¡¡alike¡¡in¡¡both¡¡cases£»¡¡the¡¡only
difference¡¡being¡¡the¡¡addition¡¡of¡¡the¡¡expression¡¡'necessarily'¡¡to¡¡the
terms¡£¡¡For¡¡the¡¡negative¡¡statement¡¡is¡¡convertible¡¡alike¡¡in¡¡both
cases£»¡¡and¡¡we¡¡should¡¡give¡¡the¡¡same¡¡account¡¡of¡¡the¡¡expressions¡¡'to¡¡be
contained¡¡in¡¡something¡¡as¡¡in¡¡a¡¡whole'¡¡and¡¡'to¡¡be¡¡predicated¡¡of¡¡all
of¡¡something'¡£¡¡With¡¡the¡¡exceptions¡¡to¡¡be¡¡made¡¡below£»¡¡the¡¡conclusion
will¡¡be¡¡proved¡¡to¡¡be¡¡necessary¡¡by¡¡means¡¡of¡¡conversion£»¡¡in¡¡the¡¡same
manner¡¡as¡¡in¡¡the¡¡case¡¡of¡¡simple¡¡predication¡£¡¡But¡¡in¡¡the¡¡middle
figure¡¡when¡¡the¡¡universal¡¡statement¡¡is¡¡affirmative£»¡¡and¡¡the¡¡particular
negative£»¡¡and¡¡again¡¡in¡¡the¡¡third¡¡figure¡¡when¡¡the¡¡universal¡¡is
affirmative¡¡and¡¡the¡¡particular¡¡negative£»¡¡the¡¡demonstration¡¡will¡¡not
take¡¡the¡¡same¡¡form£»¡¡but¡¡it¡¡is¡¡necessary¡¡by¡¡the¡¡'exposition'¡¡of¡¡a
part¡¡of¡¡the¡¡subject¡¡of¡¡the¡¡particular¡¡negative¡¡proposition£»¡¡to¡¡which
the¡¡predicate¡¡does¡¡not¡¡belong£»¡¡to¡¡make¡¡the¡¡syllogism¡¡in¡¡reference¡¡to
this£º¡¡with¡¡terms¡¡so¡¡chosen¡¡the¡¡conclusion¡¡will¡¡necessarily¡¡follow¡£¡¡But
if¡¡the¡¡relation¡¡is¡¡necessary¡¡in¡¡respect¡¡of¡¡the¡¡part¡¡taken£»¡¡it¡¡must
hold¡¡of¡¡some¡¡of¡¡that¡¡term¡¡in¡¡which¡¡this¡¡part¡¡is¡¡included£º¡¡for¡¡the¡¡part
taken¡¡is¡¡just¡¡some¡¡of¡¡that¡£¡¡And¡¡each¡¡of¡¡the¡¡resulting¡¡syllogisms¡¡is¡¡in
the¡¡appropriate¡¡figure¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9
¡¡¡¡It¡¡happens¡¡sometimes¡¡also¡¡that¡¡when¡¡one¡¡premiss¡¡is¡¡necessary¡¡the
conclusion¡¡is¡¡necessary£»¡¡not¡¡however¡¡when¡¡either¡¡premiss¡¡is¡¡necessary£»
but¡¡only¡¡when¡¡the¡¡major¡¡is£»¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡taken¡¡as¡¡necessarily
belonging¡¡or¡¡not¡¡belonging¡¡to¡¡B£»¡¡but¡¡B¡¡is¡¡taken¡¡as¡¡simply¡¡belonging¡¡to
C£º¡¡for¡¡if¡¡the¡¡premisses¡¡are¡¡taken¡¡in¡¡this¡¡way£»¡¡A¡¡will¡¡necessarily
belong¡¡or¡¡not¡¡belong¡¡to¡¡C¡£¡¡For¡¡since¡¡necessarily¡¡belongs£»¡¡or¡¡does
not¡¡belong£»¡¡to¡¡every¡¡B£»¡¡and¡¡since¡¡C¡¡is¡¡one¡¡of¡¡the¡¡Bs£»¡¡it¡¡is¡¡clear¡¡that
for¡¡C¡¡also¡¡the¡¡positive¡¡or¡¡the¡¡negative¡¡relation¡¡to¡¡A¡¡will¡¡hold
necessarily¡£¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡but¡¡the
minor¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡For¡¡if¡¡it
were£»¡¡it¡¡would¡¡result¡¡both¡¡through¡¡the¡¡first¡¡figure¡¡and¡¡through¡¡the
third¡¡that¡¡A¡¡belongs¡¡necessarily¡¡to¡¡some¡¡B¡£¡¡But¡¡this¡¡is¡¡false£»¡¡for¡¡B
may¡¡be¡¡such¡¡that¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡none¡¡of¡¡it¡£
Further£»¡¡an¡¡example¡¡also¡¡makes¡¡it¡¡clear¡¡that¡¡the¡¡conclusion¡¡not¡¡be
necessary£»¡¡e¡£g¡£¡¡if¡¡A¡¡were¡¡movement£»¡¡B¡¡animal£»¡¡C¡¡man£º¡¡man¡¡is¡¡an
animal¡¡necessarily£»¡¡but¡¡an¡¡animal¡¡does¡¡not¡¡move¡¡necessarily£»¡¡nor
does¡¡man¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡negative£»¡¡for¡¡the
proof¡¡is¡¡the¡¡same¡£
¡¡¡¡In¡¡particular¡¡syllogisms£»¡¡if¡¡the¡¡universal¡¡premiss¡¡is¡¡necessary£»
then¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡particular£»¡¡the
conclusion¡¡will¡¡not¡¡be¡¡necessary£»¡¡whether¡¡the¡¡universal¡¡premiss¡¡is
negative¡¡or¡¡affirmative¡£¡¡First¡¡let¡¡the¡¡universal¡¡be¡¡necessary£»¡¡and¡¡let
A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡let¡¡B¡¡simply¡¡belong¡¡to¡¡some¡¡C£º¡¡it
is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡¡necessarily£º¡¡for¡¡C¡¡falls
under¡¡B£»¡¡and¡¡A¡¡was¡¡assumed¡¡to¡¡belong¡¡necessarily¡¡to¡¡all¡¡B¡£¡¡Similarly
also¡¡if¡¡the¡¡syllogism¡¡should¡¡be¡¡negative£º¡¡for¡¡the¡¡proof¡¡will¡¡be¡¡the
same¡£¡¡But¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion
will¡¡not¡¡be¡¡necessary£º¡¡for¡¡from¡¡the¡¡denial¡¡of¡¡such¡¡a¡¡conclusion
nothing¡¡impossible¡¡results£»¡¡just¡¡as¡¡it¡¡does¡¡not¡¡in¡¡the¡¡universal
syllogisms¡£¡¡The¡¡same¡¡is¡¡true¡¡of¡¡negative¡¡syllogisms¡£¡¡Try¡¡the¡¡terms
movement£»¡¡animal£»¡¡white¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10
¡¡¡¡In¡¡the¡¡second¡¡figure£»¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡necessary£»¡¡then¡¡the
conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡affirmative£»¡¡not¡¡necessary¡£
First¡¡let¡¡the¡¡negative¡¡be¡¡necessary£»¡¡let¡¡A¡¡be¡¡possible¡¡of¡¡no¡¡B£»¡¡and
simply¡¡belong¡¡to¡¡C¡£¡¡Since¡¡then¡¡the¡¡negative¡¡statement¡¡is
convertible£»¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡A¡£¡¡But¡¡A¡¡belongs¡¡to¡¡all¡¡C£»
consequently¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡C¡£¡¡For¡¡C¡¡falls¡¡under¡¡A¡£¡¡The¡¡same
result¡¡would¡¡be¡¡obtained¡¡if¡¡the¡¡minor¡¡premiss¡¡were¡¡negative£º¡¡for¡¡if
A¡¡is¡¡possible¡¡be¡¡of¡¡no¡¡C£»¡¡C¡¡is¡¡possible¡¡of¡¡no¡¡A£º¡¡but¡¡A¡¡belongs¡¡to
all¡¡B£»¡¡consequently¡¡C¡¡is¡¡possible¡¡of¡¡none¡¡of¡¡the¡¡Bs£º¡¡for¡¡again¡¡we¡¡have
obtained¡¡the¡¡first¡¡figure¡£¡¡Neither¡¡then¡¡is¡¡B¡¡possible¡¡of¡¡C£º¡¡for
conversion¡¡is¡¡possible¡¡without¡¡modifying¡¡the¡¡relation¡£
¡¡¡¡But¡¡if¡¡the¡¡affirmative¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not
be¡¡necessary¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡to¡¡no¡¡C¡¡simply¡£
If¡¡then¡¡the¡¡negative¡¡premiss¡¡is¡¡converted£»¡¡the¡¡first¡¡figure¡¡results¡£
But¡¡it¡¡has¡¡been¡¡proved¡¡in¡¡the¡¡case¡¡of¡¡the¡¡first¡¡figure¡¡that¡¡if¡¡the
negative¡¡major¡¡premiss¡¡is¡¡not¡¡necessary¡¡the¡¡conclusion¡¡will¡¡not¡¡be
necessary¡¡either¡£¡¡Therefore¡¡the¡¡same¡¡result¡¡will¡¡obtain¡¡here¡£¡¡Further£»
if¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡it¡¡follows¡¡that¡¡C¡¡necessarily¡¡does¡¡not
belong¡¡to¡¡some¡¡A¡£¡¡For¡¡if¡¡B¡¡necessarily¡¡belongs¡¡to¡¡no¡¡C£»¡¡C¡¡will
necessarily¡¡belong¡¡to¡¡no¡¡B¡£¡¡But¡¡B¡¡at¡¡any¡¡rate¡¡must¡¡belong¡¡to¡¡some¡¡A£»
if¡¡it¡¡is¡¡true¡¡£¨as¡¡was¡¡assumed£©¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B¡£
Consequently¡¡it¡¡is¡¡necessary¡¡that¡¡C¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡A¡£¡¡But
nothing¡¡prevents¡¡such¡¡an¡¡A¡¡being¡¡taken¡¡that¡¡it¡¡is¡¡possible¡¡for¡¡C¡¡to
belong¡¡to¡¡all¡¡of¡¡it¡£¡¡Further¡¡one¡¡might¡¡show¡¡by¡¡an¡¡exposition¡¡of
terms¡¡that¡¡the¡¡conclusion¡¡is¡¡not¡¡necessary¡¡without¡¡qualification£»
though¡¡it¡¡is¡¡a¡¡necessary¡¡conclusion¡¡from¡¡the¡¡premisses¡£¡¡For¡¡example
let¡¡A¡¡be¡¡animal£»¡¡B¡¡man£»¡¡C¡¡white£»¡¡and¡¡let¡¡the¡¡premisses¡¡be¡¡assumed¡¡to
correspond¡¡to¡¡what¡¡we¡¡had¡¡before£º¡¡it¡¡is¡¡possible¡¡that¡¡animal¡¡should
belong¡¡to¡¡nothing¡¡white¡£¡¡Man¡¡then¡¡will¡¡not¡¡belong¡¡to¡¡anything¡¡white£»
but¡¡not¡¡necessarily£º¡¡for¡¡it¡¡is¡¡possible¡¡for¡¡man¡¡to¡¡be¡¡born¡¡white£»
not¡¡however¡¡so¡¡long¡¡as¡¡animal¡¡belongs¡¡to¡¡nothing¡¡white¡£¡¡Consequently
under¡¡these¡¡conditions¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡it¡¡is¡¡not
necessary¡¡without¡¡qualification¡£
¡¡¡¡Similar¡¡results¡¡will¡¡obtain¡¡also¡¡in¡¡particular¡¡syllogisms¡£¡¡For
whenever¡¡the¡¡negative¡¡premiss¡¡i
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü