¡¶prior analytics¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

prior analytics- µÚ4²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡



substitution¡¡of¡¡an¡¡indefinite¡¡for¡¡a¡¡particular¡¡affirmative¡¡will¡¡effect



the¡¡same¡¡syllogism¡¡in¡¡all¡¡the¡¡figures¡£



¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡all¡¡the¡¡imperfect¡¡syllogisms¡¡are¡¡made¡¡perfect



by¡¡means¡¡of¡¡the¡¡first¡¡figure¡£¡¡For¡¡all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion



either¡¡ostensively¡¡or¡¡per¡¡impossibile¡£¡¡In¡¡both¡¡ways¡¡the¡¡first¡¡figure



is¡¡formed£º¡¡if¡¡they¡¡are¡¡made¡¡perfect¡¡ostensively£»¡¡because¡¡£¨as¡¡we¡¡saw£©



all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion¡¡by¡¡means¡¡of¡¡conversion£»¡¡and¡¡conversion



produces¡¡the¡¡first¡¡figure£º¡¡if¡¡they¡¡are¡¡proved¡¡per¡¡impossibile£»¡¡because



on¡¡the¡¡assumption¡¡of¡¡the¡¡false¡¡statement¡¡the¡¡syllogism¡¡comes¡¡about



by¡¡means¡¡of¡¡the¡¡first¡¡figure£»¡¡e¡£g¡£¡¡in¡¡the¡¡last¡¡figure£»¡¡if¡¡A¡¡and¡¡B



belong¡¡to¡¡all¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for¡¡if¡¡A



belonged¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡would¡¡belong¡¡to¡¡no¡¡C£º



but¡¡£¨as¡¡we¡¡stated£©¡¡it¡¡belongs¡¡to¡¡all¡¡C¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡rest¡£



¡¡¡¡It¡¡is¡¡possible¡¡also¡¡to¡¡reduce¡¡all¡¡syllogisms¡¡to¡¡the¡¡universal



syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Those¡¡in¡¡the¡¡second¡¡figure¡¡are¡¡clearly



made¡¡perfect¡¡by¡¡these£»¡¡though¡¡not¡¡all¡¡in¡¡the¡¡same¡¡way£»¡¡the¡¡universal



syllogisms¡¡are¡¡made¡¡perfect¡¡by¡¡converting¡¡the¡¡negative¡¡premiss£»¡¡each



of¡¡the¡¡particular¡¡syllogisms¡¡by¡¡reductio¡¡ad¡¡impossibile¡£¡¡In¡¡the



first¡¡figure¡¡particular¡¡syllogisms¡¡are¡¡indeed¡¡made¡¡perfect¡¡by



themselves£»¡¡but¡¡it¡¡is¡¡possible¡¡also¡¡to¡¡prove¡¡them¡¡by¡¡means¡¡of¡¡the



second¡¡figure£»¡¡reducing¡¡them¡¡ad¡¡impossibile£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to



all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡£¡¡For¡¡if¡¡it



belonged¡¡to¡¡no¡¡C£»¡¡and¡¡belongs¡¡to¡¡all¡¡B£»¡¡then¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡C£º



this¡¡we¡¡know¡¡by¡¡means¡¡of¡¡the¡¡second¡¡figure¡£¡¡Similarly¡¡also



demonstration¡¡will¡¡be¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡the¡¡negative¡£¡¡For¡¡if¡¡A



belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£º



for¡¡if¡¡it¡¡belonged¡¡to¡¡all¡¡C£»¡¡and¡¡belongs¡¡to¡¡no¡¡B£»¡¡then¡¡B¡¡will¡¡belong



to¡¡no¡¡C£º¡¡and¡¡this¡¡£¨as¡¡we¡¡saw£©¡¡is¡¡the¡¡middle¡¡figure¡£¡¡Consequently£»



since¡¡all¡¡syllogisms¡¡in¡¡the¡¡middle¡¡figure¡¡can¡¡be¡¡reduced¡¡to



universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£»¡¡and¡¡since¡¡particular



syllogisms¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡reduced¡¡to¡¡syllogisms¡¡in¡¡the



middle¡¡figure£»¡¡it¡¡is¡¡clear¡¡that¡¡particular¡¡syllogisms¡¡can¡¡be¡¡reduced



to¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Syllogisms¡¡in¡¡the¡¡third



figure£»¡¡if¡¡the¡¡terms¡¡are¡¡universal£»¡¡are¡¡directly¡¡made¡¡perfect¡¡by¡¡means



of¡¡those¡¡syllogisms£»¡¡but£»¡¡when¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡particular£»



by¡¡means¡¡of¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£º¡¡and¡¡these



£¨we¡¡have¡¡seen£©¡¡may¡¡be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first



figure£º¡¡consequently¡¡also¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡third



figure¡¡may¡¡be¡¡so¡¡reduced¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡all¡¡syllogisms¡¡may



be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£



¡¡¡¡We¡¡have¡¡stated¡¡then¡¡how¡¡syllogisms¡¡which¡¡prove¡¡that¡¡something



belongs¡¡or¡¡does¡¡not¡¡belong¡¡to¡¡something¡¡else¡¡are¡¡constituted£»¡¡both¡¡how



syllogisms¡¡of¡¡the¡¡same¡¡figure¡¡are¡¡constituted¡¡in¡¡themselves£»¡¡and¡¡how



syllogisms¡¡of¡¡different¡¡figures¡¡are¡¡related¡¡to¡¡one¡¡another¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8







¡¡¡¡Since¡¡there¡¡is¡¡a¡¡difference¡¡according¡¡as¡¡something¡¡belongs£»



necessarily¡¡belongs£»¡¡or¡¡may¡¡belong¡¡to¡¡something¡¡else¡¡£¨for¡¡many



things¡¡belong¡¡indeed£»¡¡but¡¡not¡¡necessarily£»¡¡others¡¡neither



necessarily¡¡nor¡¡indeed¡¡at¡¡all£»¡¡but¡¡it¡¡is¡¡possible¡¡for¡¡them¡¡to¡¡belong£©£»



it¡¡is¡¡clear¡¡that¡¡there¡¡will¡¡be¡¡different¡¡syllogisms¡¡to¡¡prove¡¡each¡¡of



these¡¡relations£»¡¡and¡¡syllogisms¡¡with¡¡differently¡¡related¡¡terms£»¡¡one



syllogism¡¡concluding¡¡from¡¡what¡¡is¡¡necessary£»¡¡another¡¡from¡¡what¡¡is£»¡¡a



third¡¡from¡¡what¡¡is¡¡possible¡£



¡¡¡¡There¡¡is¡¡hardly¡¡any¡¡difference¡¡between¡¡syllogisms¡¡from¡¡necessary



premisses¡¡and¡¡syllogisms¡¡from¡¡premisses¡¡which¡¡merely¡¡assert¡£¡¡When



the¡¡terms¡¡are¡¡put¡¡in¡¡the¡¡same¡¡way£»¡¡then£»¡¡whether¡¡something¡¡belongs



or¡¡necessarily¡¡belongs¡¡£¨or¡¡does¡¡not¡¡belong£©¡¡to¡¡something¡¡else£»¡¡a



syllogism¡¡will¡¡or¡¡will¡¡not¡¡result¡¡alike¡¡in¡¡both¡¡cases£»¡¡the¡¡only



difference¡¡being¡¡the¡¡addition¡¡of¡¡the¡¡expression¡¡'necessarily'¡¡to¡¡the



terms¡£¡¡For¡¡the¡¡negative¡¡statement¡¡is¡¡convertible¡¡alike¡¡in¡¡both



cases£»¡¡and¡¡we¡¡should¡¡give¡¡the¡¡same¡¡account¡¡of¡¡the¡¡expressions¡¡'to¡¡be



contained¡¡in¡¡something¡¡as¡¡in¡¡a¡¡whole'¡¡and¡¡'to¡¡be¡¡predicated¡¡of¡¡all



of¡¡something'¡£¡¡With¡¡the¡¡exceptions¡¡to¡¡be¡¡made¡¡below£»¡¡the¡¡conclusion



will¡¡be¡¡proved¡¡to¡¡be¡¡necessary¡¡by¡¡means¡¡of¡¡conversion£»¡¡in¡¡the¡¡same



manner¡¡as¡¡in¡¡the¡¡case¡¡of¡¡simple¡¡predication¡£¡¡But¡¡in¡¡the¡¡middle



figure¡¡when¡¡the¡¡universal¡¡statement¡¡is¡¡affirmative£»¡¡and¡¡the¡¡particular



negative£»¡¡and¡¡again¡¡in¡¡the¡¡third¡¡figure¡¡when¡¡the¡¡universal¡¡is



affirmative¡¡and¡¡the¡¡particular¡¡negative£»¡¡the¡¡demonstration¡¡will¡¡not



take¡¡the¡¡same¡¡form£»¡¡but¡¡it¡¡is¡¡necessary¡¡by¡¡the¡¡'exposition'¡¡of¡¡a



part¡¡of¡¡the¡¡subject¡¡of¡¡the¡¡particular¡¡negative¡¡proposition£»¡¡to¡¡which



the¡¡predicate¡¡does¡¡not¡¡belong£»¡¡to¡¡make¡¡the¡¡syllogism¡¡in¡¡reference¡¡to



this£º¡¡with¡¡terms¡¡so¡¡chosen¡¡the¡¡conclusion¡¡will¡¡necessarily¡¡follow¡£¡¡But



if¡¡the¡¡relation¡¡is¡¡necessary¡¡in¡¡respect¡¡of¡¡the¡¡part¡¡taken£»¡¡it¡¡must



hold¡¡of¡¡some¡¡of¡¡that¡¡term¡¡in¡¡which¡¡this¡¡part¡¡is¡¡included£º¡¡for¡¡the¡¡part



taken¡¡is¡¡just¡¡some¡¡of¡¡that¡£¡¡And¡¡each¡¡of¡¡the¡¡resulting¡¡syllogisms¡¡is¡¡in



the¡¡appropriate¡¡figure¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9







¡¡¡¡It¡¡happens¡¡sometimes¡¡also¡¡that¡¡when¡¡one¡¡premiss¡¡is¡¡necessary¡¡the



conclusion¡¡is¡¡necessary£»¡¡not¡¡however¡¡when¡¡either¡¡premiss¡¡is¡¡necessary£»



but¡¡only¡¡when¡¡the¡¡major¡¡is£»¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡taken¡¡as¡¡necessarily



belonging¡¡or¡¡not¡¡belonging¡¡to¡¡B£»¡¡but¡¡B¡¡is¡¡taken¡¡as¡¡simply¡¡belonging¡¡to



C£º¡¡for¡¡if¡¡the¡¡premisses¡¡are¡¡taken¡¡in¡¡this¡¡way£»¡¡A¡¡will¡¡necessarily



belong¡¡or¡¡not¡¡belong¡¡to¡¡C¡£¡¡For¡¡since¡¡necessarily¡¡belongs£»¡¡or¡¡does



not¡¡belong£»¡¡to¡¡every¡¡B£»¡¡and¡¡since¡¡C¡¡is¡¡one¡¡of¡¡the¡¡Bs£»¡¡it¡¡is¡¡clear¡¡that



for¡¡C¡¡also¡¡the¡¡positive¡¡or¡¡the¡¡negative¡¡relation¡¡to¡¡A¡¡will¡¡hold



necessarily¡£¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡but¡¡the



minor¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡For¡¡if¡¡it



were£»¡¡it¡¡would¡¡result¡¡both¡¡through¡¡the¡¡first¡¡figure¡¡and¡¡through¡¡the



third¡¡that¡¡A¡¡belongs¡¡necessarily¡¡to¡¡some¡¡B¡£¡¡But¡¡this¡¡is¡¡false£»¡¡for¡¡B



may¡¡be¡¡such¡¡that¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡none¡¡of¡¡it¡£



Further£»¡¡an¡¡example¡¡also¡¡makes¡¡it¡¡clear¡¡that¡¡the¡¡conclusion¡¡not¡¡be



necessary£»¡¡e¡£g¡£¡¡if¡¡A¡¡were¡¡movement£»¡¡B¡¡animal£»¡¡C¡¡man£º¡¡man¡¡is¡¡an



animal¡¡necessarily£»¡¡but¡¡an¡¡animal¡¡does¡¡not¡¡move¡¡necessarily£»¡¡nor



does¡¡man¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡negative£»¡¡for¡¡the



proof¡¡is¡¡the¡¡same¡£



¡¡¡¡In¡¡particular¡¡syllogisms£»¡¡if¡¡the¡¡universal¡¡premiss¡¡is¡¡necessary£»



then¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡particular£»¡¡the



conclusion¡¡will¡¡not¡¡be¡¡necessary£»¡¡whether¡¡the¡¡universal¡¡premiss¡¡is



negative¡¡or¡¡affirmative¡£¡¡First¡¡let¡¡the¡¡universal¡¡be¡¡necessary£»¡¡and¡¡let



A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡let¡¡B¡¡simply¡¡belong¡¡to¡¡some¡¡C£º¡¡it



is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡¡necessarily£º¡¡for¡¡C¡¡falls



under¡¡B£»¡¡and¡¡A¡¡was¡¡assumed¡¡to¡¡belong¡¡necessarily¡¡to¡¡all¡¡B¡£¡¡Similarly



also¡¡if¡¡the¡¡syllogism¡¡should¡¡be¡¡negative£º¡¡for¡¡the¡¡proof¡¡will¡¡be¡¡the



same¡£¡¡But¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion



will¡¡not¡¡be¡¡necessary£º¡¡for¡¡from¡¡the¡¡denial¡¡of¡¡such¡¡a¡¡conclusion



nothing¡¡impossible¡¡results£»¡¡just¡¡as¡¡it¡¡does¡¡not¡¡in¡¡the¡¡universal



syllogisms¡£¡¡The¡¡same¡¡is¡¡true¡¡of¡¡negative¡¡syllogisms¡£¡¡Try¡¡the¡¡terms



movement£»¡¡animal£»¡¡white¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10







¡¡¡¡In¡¡the¡¡second¡¡figure£»¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡necessary£»¡¡then¡¡the



conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡affirmative£»¡¡not¡¡necessary¡£



First¡¡let¡¡the¡¡negative¡¡be¡¡necessary£»¡¡let¡¡A¡¡be¡¡possible¡¡of¡¡no¡¡B£»¡¡and



simply¡¡belong¡¡to¡¡C¡£¡¡Since¡¡then¡¡the¡¡negative¡¡statement¡¡is



convertible£»¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡A¡£¡¡But¡¡A¡¡belongs¡¡to¡¡all¡¡C£»



consequently¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡C¡£¡¡For¡¡C¡¡falls¡¡under¡¡A¡£¡¡The¡¡same



result¡¡would¡¡be¡¡obtained¡¡if¡¡the¡¡minor¡¡premiss¡¡were¡¡negative£º¡¡for¡¡if



A¡¡is¡¡possible¡¡be¡¡of¡¡no¡¡C£»¡¡C¡¡is¡¡possible¡¡of¡¡no¡¡A£º¡¡but¡¡A¡¡belongs¡¡to





all¡¡B£»¡¡consequently¡¡C¡¡is¡¡possible¡¡of¡¡none¡¡of¡¡the¡¡Bs£º¡¡for¡¡again¡¡we¡¡have



obtained¡¡the¡¡first¡¡figure¡£¡¡Neither¡¡then¡¡is¡¡B¡¡possible¡¡of¡¡C£º¡¡for



conversion¡¡is¡¡possible¡¡without¡¡modifying¡¡the¡¡relation¡£



¡¡¡¡But¡¡if¡¡the¡¡affirmative¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not



be¡¡necessary¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡to¡¡no¡¡C¡¡simply¡£



If¡¡then¡¡the¡¡negative¡¡premiss¡¡is¡¡converted£»¡¡the¡¡first¡¡figure¡¡results¡£



But¡¡it¡¡has¡¡been¡¡proved¡¡in¡¡the¡¡case¡¡of¡¡the¡¡first¡¡figure¡¡that¡¡if¡¡the



negative¡¡major¡¡premiss¡¡is¡¡not¡¡necessary¡¡the¡¡conclusion¡¡will¡¡not¡¡be



necessary¡¡either¡£¡¡Therefore¡¡the¡¡same¡¡result¡¡will¡¡obtain¡¡here¡£¡¡Further£»



if¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡it¡¡follows¡¡that¡¡C¡¡necessarily¡¡does¡¡not



belong¡¡to¡¡some¡¡A¡£¡¡For¡¡if¡¡B¡¡necessarily¡¡belongs¡¡to¡¡no¡¡C£»¡¡C¡¡will



necessarily¡¡belong¡¡to¡¡no¡¡B¡£¡¡But¡¡B¡¡at¡¡any¡¡rate¡¡must¡¡belong¡¡to¡¡some¡¡A£»



if¡¡it¡¡is¡¡true¡¡£¨as¡¡was¡¡assumed£©¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B¡£



Consequently¡¡it¡¡is¡¡necessary¡¡that¡¡C¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡A¡£¡¡But



nothing¡¡prevents¡¡such¡¡an¡¡A¡¡being¡¡taken¡¡that¡¡it¡¡is¡¡possible¡¡for¡¡C¡¡to



belong¡¡to¡¡all¡¡of¡¡it¡£¡¡Further¡¡one¡¡might¡¡show¡¡by¡¡an¡¡exposition¡¡of



terms¡¡that¡¡the¡¡conclusion¡¡is¡¡not¡¡necessary¡¡without¡¡qualification£»



though¡¡it¡¡is¡¡a¡¡necessary¡¡conclusion¡¡from¡¡the¡¡premisses¡£¡¡For¡¡example



let¡¡A¡¡be¡¡animal£»¡¡B¡¡man£»¡¡C¡¡white£»¡¡and¡¡let¡¡the¡¡premisses¡¡be¡¡assumed¡¡to



correspond¡¡to¡¡what¡¡we¡¡had¡¡before£º¡¡it¡¡is¡¡possible¡¡that¡¡animal¡¡should



belong¡¡to¡¡nothing¡¡white¡£¡¡Man¡¡then¡¡will¡¡not¡¡belong¡¡to¡¡anything¡¡white£»



but¡¡not¡¡necessarily£º¡¡for¡¡it¡¡is¡¡possible¡¡for¡¡man¡¡to¡¡be¡¡born¡¡white£»



not¡¡however¡¡so¡¡long¡¡as¡¡animal¡¡belongs¡¡to¡¡nothing¡¡white¡£¡¡Consequently



under¡¡these¡¡conditions¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡it¡¡is¡¡not



necessary¡¡without¡¡qualification¡£



¡¡¡¡Similar¡¡results¡¡will¡¡obtain¡¡also¡¡in¡¡particular¡¡syllogisms¡£¡¡For



whenever¡¡the¡¡negative¡¡premiss¡¡i
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü