¡¶prior analytics¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

prior analytics- µÚ7²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡



the¡¡premisses¡¡by¡¡A£»¡¡and¡¡the¡¡conclusion¡¡by¡¡B£»¡¡it¡¡would¡¡not¡¡only



result¡¡that¡¡if¡¡A¡¡is¡¡necessary¡¡B¡¡is¡¡necessary£»¡¡but¡¡also¡¡that¡¡if¡¡A¡¡is



possible£»¡¡B¡¡is¡¡possible¡£



¡¡¡¡Since¡¡this¡¡is¡¡proved¡¡it¡¡is¡¡evident¡¡that¡¡if¡¡a¡¡false¡¡and¡¡not



impossible¡¡assumption¡¡is¡¡made£»¡¡the¡¡consequence¡¡of¡¡the¡¡assumption



will¡¡also¡¡be¡¡false¡¡and¡¡not¡¡impossible£º¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡false£»¡¡but¡¡not



impossible£»¡¡and¡¡if¡¡B¡¡is¡¡the¡¡consequence¡¡of¡¡A£»¡¡B¡¡also¡¡will¡¡be¡¡false¡¡but



not¡¡impossible¡£¡¡For¡¡since¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡if¡¡B's¡¡being¡¡is



the¡¡consequence¡¡of¡¡A's¡¡being£»¡¡then¡¡B's¡¡possibility¡¡will¡¡follow¡¡from



A's¡¡possibility¡¡£¨and¡¡A¡¡is¡¡assumed¡¡to¡¡be¡¡possible£©£»¡¡consequently¡¡B¡¡will



be¡¡possible£º¡¡for¡¡if¡¡it¡¡were¡¡impossible£»¡¡the¡¡same¡¡thing¡¡would¡¡at¡¡the



same¡¡time¡¡be¡¡possible¡¡and¡¡impossible¡£



¡¡¡¡Since¡¡we¡¡have¡¡defined¡¡these¡¡points£»¡¡let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B



be¡¡possible¡¡for¡¡all¡¡C£º¡¡it¡¡is¡¡necessary¡¡then¡¡that¡¡should¡¡be¡¡a



possible¡¡attribute¡¡for¡¡all¡¡C¡£¡¡Suppose¡¡that¡¡it¡¡is¡¡not¡¡possible£»¡¡but



assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£º¡¡this¡¡is¡¡false¡¡but¡¡not¡¡impossible¡£¡¡If



then¡¡A¡¡is¡¡not¡¡possible¡¡for¡¡C¡¡but¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡then¡¡A¡¡is¡¡not



possible¡¡for¡¡all¡¡B£º¡¡for¡¡a¡¡syllogism¡¡is¡¡formed¡¡in¡¡the¡¡third¡¡degree¡£¡¡But



it¡¡was¡¡assumed¡¡that¡¡A¡¡is¡¡a¡¡possible¡¡attribute¡¡for¡¡all¡¡B¡£¡¡It¡¡is



necessary¡¡then¡¡that¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡C¡£¡¡For¡¡though¡¡the¡¡assumption



we¡¡made¡¡is¡¡false¡¡and¡¡not¡¡impossible£»¡¡the¡¡conclusion¡¡is¡¡impossible¡£



It¡¡is¡¡possible¡¡also¡¡in¡¡the¡¡first¡¡figure¡¡to¡¡bring¡¡about¡¡the



impossibility£»¡¡by¡¡assuming¡¡that¡¡B¡¡belongs¡¡to¡¡C¡£¡¡For¡¡if¡¡B¡¡belongs¡¡to



all¡¡C£»¡¡and¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡then¡¡A¡¡would¡¡be¡¡possible¡¡for¡¡all



C¡£¡¡But¡¡the¡¡assumption¡¡was¡¡made¡¡that¡¡A¡¡is¡¡not¡¡possible¡¡for¡¡all¡¡C¡£



¡¡¡¡We¡¡must¡¡understand¡¡'that¡¡which¡¡belongs¡¡to¡¡all'¡¡with¡¡no¡¡limitation¡¡in



respect¡¡of¡¡time£»¡¡e¡£g¡£¡¡to¡¡the¡¡present¡¡or¡¡to¡¡a¡¡particular¡¡period£»¡¡but



simply¡¡without¡¡qualification¡£¡¡For¡¡it¡¡is¡¡by¡¡the¡¡help¡¡of¡¡such



premisses¡¡that¡¡we¡¡make¡¡syllogisms£»¡¡since¡¡if¡¡the¡¡premiss¡¡is



understood¡¡with¡¡reference¡¡to¡¡the¡¡present¡¡moment£»¡¡there¡¡cannot¡¡be¡¡a



syllogism¡£¡¡For¡¡nothing¡¡perhaps¡¡prevents¡¡'man'¡¡belonging¡¡at¡¡a



particular¡¡time¡¡to¡¡everything¡¡that¡¡is¡¡moving£»¡¡i¡£e¡£¡¡if¡¡nothing¡¡else



were¡¡moving£º¡¡but¡¡'moving'¡¡is¡¡possible¡¡for¡¡every¡¡horse£»¡¡yet¡¡'man'¡¡is



possible¡¡for¡¡no¡¡horse¡£¡¡Further¡¡let¡¡the¡¡major¡¡term¡¡be¡¡'animal'£»¡¡the



middle¡¡'moving'£»¡¡the¡¡the¡¡minor¡¡'man'¡£¡¡The¡¡premisses¡¡then¡¡will¡¡be¡¡as



before£»¡¡but¡¡the¡¡conclusion¡¡necessary£»¡¡not¡¡possible¡£¡¡For¡¡man¡¡is



necessarily¡¡animal¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡the¡¡universal¡¡must¡¡be



understood¡¡simply£»¡¡without¡¡limitation¡¡in¡¡respect¡¡of¡¡time¡£



¡¡¡¡Again¡¡let¡¡the¡¡premiss¡¡AB¡¡be¡¡universal¡¡and¡¡negative£»¡¡and¡¡assume



that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡but¡¡B¡¡possibly¡¡belongs¡¡to¡¡all¡¡C¡£¡¡These



propositions¡¡being¡¡laid¡¡down£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡possibly



belongs¡¡to¡¡no¡¡C¡£¡¡Suppose¡¡that¡¡it¡¡cannot¡¡belong£»¡¡and¡¡that¡¡B¡¡belongs



to¡¡C£»¡¡as¡¡above¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for



we¡¡have¡¡a¡¡syllogism¡¡in¡¡the¡¡third¡¡figure£º¡¡but¡¡this¡¡is¡¡impossible¡£



Thus¡¡it¡¡will¡¡be¡¡possible¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡no¡¡C£»¡¡for¡¡if¡¡at¡¡is



supposed¡¡false£»¡¡the¡¡consequence¡¡is¡¡an¡¡impossible¡¡one¡£¡¡This¡¡syllogism



then¡¡does¡¡not¡¡establish¡¡that¡¡which¡¡is¡¡possible¡¡according¡¡to¡¡the



definition£»¡¡but¡¡that¡¡which¡¡does¡¡not¡¡necessarily¡¡belong¡¡to¡¡any¡¡part



of¡¡the¡¡subject¡¡£¨for¡¡this¡¡is¡¡the¡¡contradictory¡¡of¡¡the¡¡assumption



which¡¡was¡¡made£º¡¡for¡¡it¡¡was¡¡supposed¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡some



C£»¡¡but¡¡the¡¡syllogism¡¡per¡¡impossibile¡¡establishes¡¡the¡¡contradictory



which¡¡is¡¡opposed¡¡to¡¡this£©¡£¡¡Further£»¡¡it¡¡is¡¡clear¡¡also¡¡from¡¡an¡¡example



that¡¡the¡¡conclusion¡¡will¡¡not¡¡establish¡¡possibility¡£¡¡Let¡¡A¡¡be



'raven'£»¡¡B¡¡'intelligent'£»¡¡and¡¡C¡¡'man'¡£¡¡A¡¡then¡¡belongs¡¡to¡¡no¡¡B£º¡¡for



no¡¡intelligent¡¡thing¡¡is¡¡a¡¡raven¡£¡¡But¡¡B¡¡is¡¡possible¡¡for¡¡all¡¡C£º¡¡for



every¡¡man¡¡may¡¡possibly¡¡be¡¡intelligent¡£¡¡But¡¡A¡¡necessarily¡¡belongs¡¡to¡¡no



C£º¡¡so¡¡the¡¡conclusion¡¡does¡¡not¡¡establish¡¡possibility¡£¡¡But¡¡neither¡¡is¡¡it



always¡¡necessary¡£¡¡Let¡¡A¡¡be¡¡'moving'£»¡¡B¡¡'science'£»¡¡C¡¡'man'¡£¡¡A¡¡then¡¡will



belong¡¡to¡¡no¡¡B£»¡¡but¡¡B¡¡is¡¡possible¡¡for¡¡all¡¡C¡£¡¡And¡¡the¡¡conclusion¡¡will



not¡¡be¡¡necessary¡£¡¡For¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡no¡¡man¡¡should¡¡move£»



rather¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡any¡¡man¡¡should¡¡move¡£¡¡Clearly¡¡then



the¡¡conclusion¡¡establishes¡¡that¡¡one¡¡term¡¡does¡¡not¡¡necessarily¡¡belong



to¡¡any¡¡instance¡¡of¡¡another¡¡term¡£¡¡But¡¡we¡¡must¡¡take¡¡our¡¡terms¡¡better¡£



¡¡¡¡If¡¡the¡¡minor¡¡premiss¡¡is¡¡negative¡¡and¡¡indicates¡¡possibility£»¡¡from¡¡the



actual¡¡premisses¡¡taken¡¡there¡¡can¡¡be¡¡no¡¡syllogism£»¡¡but¡¡if¡¡the



problematic¡¡premiss¡¡is¡¡converted£»¡¡a¡¡syllogism¡¡will¡¡be¡¡possible£»¡¡as



before¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡let¡¡B¡¡possibly¡¡belong¡¡to¡¡no¡¡C¡£¡¡If



the¡¡terms¡¡are¡¡arranged¡¡thus£»¡¡nothing¡¡necessarily¡¡follows£º¡¡but¡¡if¡¡the



proposition¡¡BC¡¡is¡¡converted¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡is¡¡possible¡¡for



all¡¡C£»¡¡a¡¡syllogism¡¡results¡¡as¡¡before£º¡¡for¡¡the¡¡terms¡¡are¡¡in¡¡the¡¡same



relative¡¡positions¡£¡¡Likewise¡¡if¡¡both¡¡the¡¡relations¡¡are¡¡negative£»¡¡if



the¡¡major¡¡premiss¡¡states¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡B£»¡¡and¡¡the¡¡minor



premiss¡¡indicates¡¡that¡¡B¡¡may¡¡possibly¡¡belong¡¡to¡¡no¡¡C¡£¡¡Through¡¡the



premisses¡¡actually¡¡taken¡¡nothing¡¡necessary¡¡results¡¡in¡¡any¡¡way£»¡¡but



if¡¡the¡¡problematic¡¡premiss¡¡is¡¡converted£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡£



Suppose¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡may¡¡possibly¡¡belong¡¡to¡¡no¡¡C¡£



Through¡¡these¡¡comes¡¡nothing¡¡necessary¡£¡¡But¡¡if¡¡B¡¡is¡¡assumed¡¡to¡¡be



possible¡¡for¡¡all¡¡C¡¡£¨and¡¡this¡¡is¡¡true£©¡¡and¡¡if¡¡the¡¡premiss¡¡AB¡¡remains¡¡as



before£»¡¡we¡¡shall¡¡again¡¡have¡¡the¡¡same¡¡syllogism¡£¡¡But¡¡if¡¡it¡¡be¡¡assumed



that¡¡B¡¡does¡¡not¡¡belong¡¡to¡¡any¡¡C£»¡¡instead¡¡of¡¡possibly¡¡not¡¡belonging£»



there¡¡cannot¡¡be¡¡a¡¡syllogism¡¡anyhow£»¡¡whether¡¡the¡¡premiss¡¡AB¡¡is¡¡negative



or¡¡affirmative¡£¡¡As¡¡common¡¡instances¡¡of¡¡a¡¡necessary¡¡and¡¡positive



relation¡¡we¡¡may¡¡take¡¡the¡¡terms¡¡white¡­animal¡­snow£º¡¡of¡¡a¡¡necessary¡¡and



negative¡¡relation£»¡¡white¡­animal¡­pitch¡£¡¡Clearly¡¡then¡¡if¡¡the¡¡terms¡¡are



universal£»¡¡and¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡assertoric£»¡¡the¡¡other



problematic£»¡¡whenever¡¡the¡¡minor¡¡premiss¡¡is¡¡problematic¡¡a¡¡syllogism



always¡¡results£»¡¡only¡¡sometimes¡¡it¡¡results¡¡from¡¡the¡¡premisses¡¡that



are¡¡taken£»¡¡sometimes¡¡it¡¡requires¡¡the¡¡conversion¡¡of¡¡one¡¡premiss¡£¡¡We



have¡¡stated¡¡when¡¡each¡¡of¡¡these¡¡happens¡¡and¡¡the¡¡reason¡¡why¡£¡¡But¡¡if



one¡¡of¡¡the¡¡relations¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡then¡¡whenever



the¡¡major¡¡premiss¡¡is¡¡universal¡¡and¡¡problematic£»¡¡whether¡¡affirmative¡¡or



negative£»¡¡and¡¡the¡¡particular¡¡is¡¡affirmative¡¡and¡¡assertoric£»¡¡there¡¡will



be¡¡a¡¡perfect¡¡syllogism£»¡¡just¡¡as¡¡when¡¡the¡¡terms¡¡are¡¡universal¡£¡¡The



demonstration¡¡is¡¡the¡¡same¡¡as¡¡before¡£¡¡But¡¡whenever¡¡the¡¡major¡¡premiss¡¡is



universal£»¡¡but¡¡assertoric£»¡¡not¡¡problematic£»¡¡and¡¡the¡¡minor¡¡is



particular¡¡and¡¡problematic£»¡¡whether¡¡both¡¡premisses¡¡are¡¡negative¡¡or



affirmative£»¡¡or¡¡one¡¡is¡¡negative£»¡¡the¡¡other¡¡affirmative£»¡¡in¡¡all¡¡cases



there¡¡will¡¡be¡¡an¡¡imperfect¡¡syllogism¡£¡¡Only¡¡some¡¡of¡¡them¡¡will¡¡be¡¡proved



per¡¡impossibile£»¡¡others¡¡by¡¡the¡¡conversion¡¡of¡¡the¡¡problematic



premiss£»¡¡as¡¡has¡¡been¡¡shown¡¡above¡£¡¡And¡¡a¡¡syllogism¡¡will¡¡be¡¡possible



by¡¡means¡¡of¡¡conversion¡¡when¡¡the¡¡major¡¡premiss¡¡is¡¡universal¡¡and



assertoric£»¡¡whether¡¡positive¡¡or¡¡negative£»¡¡and¡¡the¡¡minor¡¡particular£»



negative£»¡¡and¡¡problematic£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡or¡¡to¡¡no¡¡B£»



and¡¡B¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡C¡£¡¡For¡¡if¡¡the¡¡premiss¡¡BC¡¡is



converted¡¡in¡¡respect¡¡of¡¡possibility£»¡¡a¡¡syllogism¡¡results¡£¡¡But¡¡whenever



the¡¡particular¡¡premiss¡¡is¡¡assertoric¡¡and¡¡negative£»¡¡there¡¡cannot¡¡be¡¡a



syllogism¡£¡¡As¡¡instances¡¡of¡¡the¡¡positive¡¡relation¡¡we¡¡may¡¡take¡¡the¡¡terms



white¡­animal¡­snow£»¡¡of¡¡the¡¡negative£»¡¡white¡­animal¡­pitch¡£¡¡For¡¡the



demonstration¡¡must¡¡be¡¡made¡¡through¡¡the¡¡indefinite¡¡nature¡¡of¡¡the



particular¡¡premiss¡£¡¡But¡¡if¡¡the¡¡minor¡¡premiss¡¡is¡¡universal£»¡¡and¡¡the



major¡¡particular£»¡¡whether¡¡either¡¡premiss¡¡is¡¡negative¡¡or¡¡affirmative£»



problematic¡¡or¡¡assertoric£»¡¡nohow¡¡is¡¡a¡¡syllogism¡¡possible¡£¡¡Nor¡¡is¡¡a



syllogism¡¡possible¡¡when¡¡the¡¡premisses¡¡are¡¡particular¡¡or¡¡indefinite£»



whether¡¡problematic¡¡or¡¡assertoric£»¡¡or¡¡the¡¡one¡¡problematic£»¡¡the¡¡other



assertoric¡£¡¡The¡¡demonstration¡¡is¡¡the¡¡same¡¡as¡¡above¡£¡¡As¡¡instances¡¡of



the¡¡necessary¡¡and¡¡positive¡¡relation¡¡we¡¡may¡¡take¡¡the¡¡terms



animal¡­white¡­man£»¡¡of¡¡the¡¡necessary¡¡and¡¡negative¡¡relation£»



animal¡­white¡­garment¡£¡¡It¡¡is¡¡evident¡¡then¡¡that¡¡if¡¡the¡¡major¡¡premiss



is¡¡universal£»¡¡a¡¡syllogism¡¡always¡¡results£»¡¡but¡¡if¡¡the¡¡minor¡¡is



universal¡¡nothing¡¡at¡¡all¡¡can¡¡ever¡¡be¡¡proved¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡16







¡¡¡¡Whenever¡¡one¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡other¡¡problematic£»¡¡there¡¡will



be¡¡a¡¡syllogism¡¡when¡¡the¡¡terms¡¡are¡¡related¡¡as¡¡before£»¡¡and¡¡a¡¡perfect



syllogism¡¡when¡¡the¡¡minor¡¡premiss¡¡is¡¡necessary¡£¡¡If¡¡the¡¡premisses¡¡are



affirmative¡¡the¡¡conclusion¡¡will¡¡be¡¡problematic£»¡¡not¡¡assertoric£»



whether¡¡the¡¡premisses¡¡are¡¡universal¡¡or¡¡not£º¡¡but¡¡if¡¡one¡¡is¡¡affirmative£»



the¡¡other¡¡negative£»¡¡when¡¡the¡¡affirmative¡¡is¡¡necessary¡¡the¡¡conclusion



will¡¡be¡¡problematic£»¡¡not¡¡negative¡¡assertoric£»¡¡but¡¡when¡¡the¡¡negative¡¡is



necessary¡¡the¡¡conclusion¡¡will¡¡be¡¡problematic¡¡negative£»¡¡and



assertoric¡¡negative£»¡¡whether¡¡the¡¡premisses¡¡are¡¡universal¡¡or¡¡not¡£



Possibility¡¡in¡¡the¡¡conclusion¡¡must¡¡be¡¡understood¡¡in¡¡the¡¡same¡¡manner¡¡as



before¡£¡¡There¡¡cannot¡¡be¡¡an¡¡inference¡¡to¡¡the¡¡necessary¡¡negative



proposition£º¡¡for¡¡'not¡¡necessarily¡¡to¡¡belong'¡¡is¡¡different¡¡from



'necessarily¡¡not¡¡to¡¡belong'¡£



¡¡¡¡If¡¡the¡¡premisses¡¡are¡¡affirmative£»¡¡clearly¡¡the¡¡conclusion¡¡which



follows¡¡is¡¡not¡¡necessary¡£¡¡Suppose¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B£»



and¡¡let¡¡B¡¡be¡¡possible¡¡for¡¡all¡¡C¡£¡¡We¡¡shall¡¡have¡¡an¡¡imperfect



syllogism¡¡to¡¡prove¡¡that¡¡A¡¡may¡¡belong¡¡to¡¡all¡¡C¡£¡¡That¡¡it¡¡is¡¡imperfect¡¡is



clear¡¡from¡¡the¡¡proof£º¡¡for¡¡it¡¡will¡¡be¡¡proved¡¡in¡¡the¡¡same¡¡manner¡¡as



above¡£¡¡Again£»¡¡let¡¡A¡¡be¡¡possible¡¡for¡¡all¡¡B£»¡¡and¡¡let¡¡B¡¡necessarily



belong¡¡to¡¡all¡¡C¡£¡¡We¡¡shall¡¡then¡¡have¡¡a¡¡syllogism¡¡to¡¡prove¡¡that¡¡A¡¡may



belong¡¡to¡¡all¡¡C£»¡¡not¡¡that¡¡A¡¡does¡¡belong¡¡to¡¡all¡¡C£º¡¡and¡¡it¡¡is¡¡perfect£»



not¡¡imperfect£º¡¡for¡¡it¡¡is¡¡c
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü