the¡¡premisses¡¡by¡¡A£»¡¡and¡¡the¡¡conclusion¡¡by¡¡B£»¡¡it¡¡would¡¡not¡¡only
result¡¡that¡¡if¡¡A¡¡is¡¡necessary¡¡B¡¡is¡¡necessary£»¡¡but¡¡also¡¡that¡¡if¡¡A¡¡is
possible£»¡¡B¡¡is¡¡possible¡£
¡¡¡¡Since¡¡this¡¡is¡¡proved¡¡it¡¡is¡¡evident¡¡that¡¡if¡¡a¡¡false¡¡and¡¡not
impossible¡¡assumption¡¡is¡¡made£»¡¡the¡¡consequence¡¡of¡¡the¡¡assumption
will¡¡also¡¡be¡¡false¡¡and¡¡not¡¡impossible£º¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡false£»¡¡but¡¡not
impossible£»¡¡and¡¡if¡¡B¡¡is¡¡the¡¡consequence¡¡of¡¡A£»¡¡B¡¡also¡¡will¡¡be¡¡false¡¡but
not¡¡impossible¡£¡¡For¡¡since¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡if¡¡B's¡¡being¡¡is
the¡¡consequence¡¡of¡¡A's¡¡being£»¡¡then¡¡B's¡¡possibility¡¡will¡¡follow¡¡from
A's¡¡possibility¡¡£¨and¡¡A¡¡is¡¡assumed¡¡to¡¡be¡¡possible£©£»¡¡consequently¡¡B¡¡will
be¡¡possible£º¡¡for¡¡if¡¡it¡¡were¡¡impossible£»¡¡the¡¡same¡¡thing¡¡would¡¡at¡¡the
same¡¡time¡¡be¡¡possible¡¡and¡¡impossible¡£
¡¡¡¡Since¡¡we¡¡have¡¡defined¡¡these¡¡points£»¡¡let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B
be¡¡possible¡¡for¡¡all¡¡C£º¡¡it¡¡is¡¡necessary¡¡then¡¡that¡¡should¡¡be¡¡a
possible¡¡attribute¡¡for¡¡all¡¡C¡£¡¡Suppose¡¡that¡¡it¡¡is¡¡not¡¡possible£»¡¡but
assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£º¡¡this¡¡is¡¡false¡¡but¡¡not¡¡impossible¡£¡¡If
then¡¡A¡¡is¡¡not¡¡possible¡¡for¡¡C¡¡but¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡then¡¡A¡¡is¡¡not
possible¡¡for¡¡all¡¡B£º¡¡for¡¡a¡¡syllogism¡¡is¡¡formed¡¡in¡¡the¡¡third¡¡degree¡£¡¡But
it¡¡was¡¡assumed¡¡that¡¡A¡¡is¡¡a¡¡possible¡¡attribute¡¡for¡¡all¡¡B¡£¡¡It¡¡is
necessary¡¡then¡¡that¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡C¡£¡¡For¡¡though¡¡the¡¡assumption
we¡¡made¡¡is¡¡false¡¡and¡¡not¡¡impossible£»¡¡the¡¡conclusion¡¡is¡¡impossible¡£
It¡¡is¡¡possible¡¡also¡¡in¡¡the¡¡first¡¡figure¡¡to¡¡bring¡¡about¡¡the
impossibility£»¡¡by¡¡assuming¡¡that¡¡B¡¡belongs¡¡to¡¡C¡£¡¡For¡¡if¡¡B¡¡belongs¡¡to
all¡¡C£»¡¡and¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡then¡¡A¡¡would¡¡be¡¡possible¡¡for¡¡all
C¡£¡¡But¡¡the¡¡assumption¡¡was¡¡made¡¡that¡¡A¡¡is¡¡not¡¡possible¡¡for¡¡all¡¡C¡£
¡¡¡¡We¡¡must¡¡understand¡¡'that¡¡which¡¡belongs¡¡to¡¡all'¡¡with¡¡no¡¡limitation¡¡in
respect¡¡of¡¡time£»¡¡e¡£g¡£¡¡to¡¡the¡¡present¡¡or¡¡to¡¡a¡¡particular¡¡period£»¡¡but
simply¡¡without¡¡qualification¡£¡¡For¡¡it¡¡is¡¡by¡¡the¡¡help¡¡of¡¡such
premisses¡¡that¡¡we¡¡make¡¡syllogisms£»¡¡since¡¡if¡¡the¡¡premiss¡¡is
understood¡¡with¡¡reference¡¡to¡¡the¡¡present¡¡moment£»¡¡there¡¡cannot¡¡be¡¡a
syllogism¡£¡¡For¡¡nothing¡¡perhaps¡¡prevents¡¡'man'¡¡belonging¡¡at¡¡a
particular¡¡time¡¡to¡¡everything¡¡that¡¡is¡¡moving£»¡¡i¡£e¡£¡¡if¡¡nothing¡¡else
were¡¡moving£º¡¡but¡¡'moving'¡¡is¡¡possible¡¡for¡¡every¡¡horse£»¡¡yet¡¡'man'¡¡is
possible¡¡for¡¡no¡¡horse¡£¡¡Further¡¡let¡¡the¡¡major¡¡term¡¡be¡¡'animal'£»¡¡the
middle¡¡'moving'£»¡¡the¡¡the¡¡minor¡¡'man'¡£¡¡The¡¡premisses¡¡then¡¡will¡¡be¡¡as
before£»¡¡but¡¡the¡¡conclusion¡¡necessary£»¡¡not¡¡possible¡£¡¡For¡¡man¡¡is
necessarily¡¡animal¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡the¡¡universal¡¡must¡¡be
understood¡¡simply£»¡¡without¡¡limitation¡¡in¡¡respect¡¡of¡¡time¡£
¡¡¡¡Again¡¡let¡¡the¡¡premiss¡¡AB¡¡be¡¡universal¡¡and¡¡negative£»¡¡and¡¡assume
that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡but¡¡B¡¡possibly¡¡belongs¡¡to¡¡all¡¡C¡£¡¡These
propositions¡¡being¡¡laid¡¡down£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡possibly
belongs¡¡to¡¡no¡¡C¡£¡¡Suppose¡¡that¡¡it¡¡cannot¡¡belong£»¡¡and¡¡that¡¡B¡¡belongs
to¡¡C£»¡¡as¡¡above¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for
we¡¡have¡¡a¡¡syllogism¡¡in¡¡the¡¡third¡¡figure£º¡¡but¡¡this¡¡is¡¡impossible¡£
Thus¡¡it¡¡will¡¡be¡¡possible¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡no¡¡C£»¡¡for¡¡if¡¡at¡¡is
supposed¡¡false£»¡¡the¡¡consequence¡¡is¡¡an¡¡impossible¡¡one¡£¡¡This¡¡syllogism
then¡¡does¡¡not¡¡establish¡¡that¡¡which¡¡is¡¡possible¡¡according¡¡to¡¡the
definition£»¡¡but¡¡that¡¡which¡¡does¡¡not¡¡necessarily¡¡belong¡¡to¡¡any¡¡part
of¡¡the¡¡subject¡¡£¨for¡¡this¡¡is¡¡the¡¡contradictory¡¡of¡¡the¡¡assumption
which¡¡was¡¡made£º¡¡for¡¡it¡¡was¡¡supposed¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡some
C£»¡¡but¡¡the¡¡syllogism¡¡per¡¡impossibile¡¡establishes¡¡the¡¡contradictory
which¡¡is¡¡opposed¡¡to¡¡this£©¡£¡¡Further£»¡¡it¡¡is¡¡clear¡¡also¡¡from¡¡an¡¡example
that¡¡the¡¡conclusion¡¡will¡¡not¡¡establish¡¡possibility¡£¡¡Let¡¡A¡¡be
'raven'£»¡¡B¡¡'intelligent'£»¡¡and¡¡C¡¡'man'¡£¡¡A¡¡then¡¡belongs¡¡to¡¡no¡¡B£º¡¡for
no¡¡intelligent¡¡thing¡¡is¡¡a¡¡raven¡£¡¡But¡¡B¡¡is¡¡possible¡¡for¡¡all¡¡C£º¡¡for
every¡¡man¡¡may¡¡possibly¡¡be¡¡intelligent¡£¡¡But¡¡A¡¡necessarily¡¡belongs¡¡to¡¡no
C£º¡¡so¡¡the¡¡conclusion¡¡does¡¡not¡¡establish¡¡possibility¡£¡¡But¡¡neither¡¡is¡¡it
always¡¡necessary¡£¡¡Let¡¡A¡¡be¡¡'moving'£»¡¡B¡¡'science'£»¡¡C¡¡'man'¡£¡¡A¡¡then¡¡will
belong¡¡to¡¡no¡¡B£»¡¡but¡¡B¡¡is¡¡possible¡¡for¡¡all¡¡C¡£¡¡And¡¡the¡¡conclusion¡¡will
not¡¡be¡¡necessary¡£¡¡For¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡no¡¡man¡¡should¡¡move£»
rather¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡any¡¡man¡¡should¡¡move¡£¡¡Clearly¡¡then
the¡¡conclusion¡¡establishes¡¡that¡¡one¡¡term¡¡does¡¡not¡¡necessarily¡¡belong
to¡¡any¡¡instance¡¡of¡¡another¡¡term¡£¡¡But¡¡we¡¡must¡¡take¡¡our¡¡terms¡¡better¡£
¡¡¡¡If¡¡the¡¡minor¡¡premiss¡¡is¡¡negative¡¡and¡¡indicates¡¡possibility£»¡¡from¡¡the
actual¡¡premisses¡¡taken¡¡there¡¡can¡¡be¡¡no¡¡syllogism£»¡¡but¡¡if¡¡the
problematic¡¡premiss¡¡is¡¡converted£»¡¡a¡¡syllogism¡¡will¡¡be¡¡possible£»¡¡as
before¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡let¡¡B¡¡possibly¡¡belong¡¡to¡¡no¡¡C¡£¡¡If
the¡¡terms¡¡are¡¡arranged¡¡thus£»¡¡nothing¡¡necessarily¡¡follows£º¡¡but¡¡if¡¡the
proposition¡¡BC¡¡is¡¡converted¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡is¡¡possible¡¡for
all¡¡C£»¡¡a¡¡syllogism¡¡results¡¡as¡¡before£º¡¡for¡¡the¡¡terms¡¡are¡¡in¡¡the¡¡same
relative¡¡positions¡£¡¡Likewise¡¡if¡¡both¡¡the¡¡relations¡¡are¡¡negative£»¡¡if
the¡¡major¡¡premiss¡¡states¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡B£»¡¡and¡¡the¡¡minor
premiss¡¡indicates¡¡that¡¡B¡¡may¡¡possibly¡¡belong¡¡to¡¡no¡¡C¡£¡¡Through¡¡the
premisses¡¡actually¡¡taken¡¡nothing¡¡necessary¡¡results¡¡in¡¡any¡¡way£»¡¡but
if¡¡the¡¡problematic¡¡premiss¡¡is¡¡converted£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡£
Suppose¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡may¡¡possibly¡¡belong¡¡to¡¡no¡¡C¡£
Through¡¡these¡¡comes¡¡nothing¡¡necessary¡£¡¡But¡¡if¡¡B¡¡is¡¡assumed¡¡to¡¡be
possible¡¡for¡¡all¡¡C¡¡£¨and¡¡this¡¡is¡¡true£©¡¡and¡¡if¡¡the¡¡premiss¡¡AB¡¡remains¡¡as
before£»¡¡we¡¡shall¡¡again¡¡have¡¡the¡¡same¡¡syllogism¡£¡¡But¡¡if¡¡it¡¡be¡¡assumed
that¡¡B¡¡does¡¡not¡¡belong¡¡to¡¡any¡¡C£»¡¡instead¡¡of¡¡possibly¡¡not¡¡belonging£»
there¡¡cannot¡¡be¡¡a¡¡syllogism¡¡anyhow£»¡¡whether¡¡the¡¡premiss¡¡AB¡¡is¡¡negative
or¡¡affirmative¡£¡¡As¡¡common¡¡instances¡¡of¡¡a¡¡necessary¡¡and¡¡positive
relation¡¡we¡¡may¡¡take¡¡the¡¡terms¡¡white¡animal¡snow£º¡¡of¡¡a¡¡necessary¡¡and
negative¡¡relation£»¡¡white¡animal¡pitch¡£¡¡Clearly¡¡then¡¡if¡¡the¡¡terms¡¡are
universal£»¡¡and¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡assertoric£»¡¡the¡¡other
problematic£»¡¡whenever¡¡the¡¡minor¡¡premiss¡¡is¡¡problematic¡¡a¡¡syllogism
always¡¡results£»¡¡only¡¡sometimes¡¡it¡¡results¡¡from¡¡the¡¡premisses¡¡that
are¡¡taken£»¡¡sometimes¡¡it¡¡requires¡¡the¡¡conversion¡¡of¡¡one¡¡premiss¡£¡¡We
have¡¡stated¡¡when¡¡each¡¡of¡¡these¡¡happens¡¡and¡¡the¡¡reason¡¡why¡£¡¡But¡¡if
one¡¡of¡¡the¡¡relations¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡then¡¡whenever
the¡¡major¡¡premiss¡¡is¡¡universal¡¡and¡¡problematic£»¡¡whether¡¡affirmative¡¡or
negative£»¡¡and¡¡the¡¡particular¡¡is¡¡affirmative¡¡and¡¡assertoric£»¡¡there¡¡will
be¡¡a¡¡perfect¡¡syllogism£»¡¡just¡¡as¡¡when¡¡the¡¡terms¡¡are¡¡universal¡£¡¡The
demonstration¡¡is¡¡the¡¡same¡¡as¡¡before¡£¡¡But¡¡whenever¡¡the¡¡major¡¡premiss¡¡is
universal£»¡¡but¡¡assertoric£»¡¡not¡¡problematic£»¡¡and¡¡the¡¡minor¡¡is
particular¡¡and¡¡problematic£»¡¡whether¡¡both¡¡premisses¡¡are¡¡negative¡¡or
affirmative£»¡¡or¡¡one¡¡is¡¡negative£»¡¡the¡¡other¡¡affirmative£»¡¡in¡¡all¡¡cases
there¡¡will¡¡be¡¡an¡¡imperfect¡¡syllogism¡£¡¡Only¡¡some¡¡of¡¡them¡¡will¡¡be¡¡proved
per¡¡impossibile£»¡¡others¡¡by¡¡the¡¡conversion¡¡of¡¡the¡¡problematic
premiss£»¡¡as¡¡has¡¡been¡¡shown¡¡above¡£¡¡And¡¡a¡¡syllogism¡¡will¡¡be¡¡possible
by¡¡means¡¡of¡¡conversion¡¡when¡¡the¡¡major¡¡premiss¡¡is¡¡universal¡¡and
assertoric£»¡¡whether¡¡positive¡¡or¡¡negative£»¡¡and¡¡the¡¡minor¡¡particular£»
negative£»¡¡and¡¡problematic£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡or¡¡to¡¡no¡¡B£»
and¡¡B¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡C¡£¡¡For¡¡if¡¡the¡¡premiss¡¡BC¡¡is
converted¡¡in¡¡respect¡¡of¡¡possibility£»¡¡a¡¡syllogism¡¡results¡£¡¡But¡¡whenever
the¡¡particular¡¡premiss¡¡is¡¡assertoric¡¡and¡¡negative£»¡¡there¡¡cannot¡¡be¡¡a
syllogism¡£¡¡As¡¡instances¡¡of¡¡the¡¡positive¡¡relation¡¡we¡¡may¡¡take¡¡the¡¡terms
white¡animal¡snow£»¡¡of¡¡the¡¡negative£»¡¡white¡animal¡pitch¡£¡¡For¡¡the
demonstration¡¡must¡¡be¡¡made¡¡through¡¡the¡¡indefinite¡¡nature¡¡of¡¡the
particular¡¡premiss¡£¡¡But¡¡if¡¡the¡¡minor¡¡premiss¡¡is¡¡universal£»¡¡and¡¡the
major¡¡particular£»¡¡whether¡¡either¡¡premiss¡¡is¡¡negative¡¡or¡¡affirmative£»
problematic¡¡or¡¡assertoric£»¡¡nohow¡¡is¡¡a¡¡syllogism¡¡possible¡£¡¡Nor¡¡is¡¡a
syllogism¡¡possible¡¡when¡¡the¡¡premisses¡¡are¡¡particular¡¡or¡¡indefinite£»
whether¡¡problematic¡¡or¡¡assertoric£»¡¡or¡¡the¡¡one¡¡problematic£»¡¡the¡¡other
assertoric¡£¡¡The¡¡demonstration¡¡is¡¡the¡¡same¡¡as¡¡above¡£¡¡As¡¡instances¡¡of
the¡¡necessary¡¡and¡¡positive¡¡relation¡¡we¡¡may¡¡take¡¡the¡¡terms
animal¡white¡man£»¡¡of¡¡the¡¡necessary¡¡and¡¡negative¡¡relation£»
animal¡white¡garment¡£¡¡It¡¡is¡¡evident¡¡then¡¡that¡¡if¡¡the¡¡major¡¡premiss
is¡¡universal£»¡¡a¡¡syllogism¡¡always¡¡results£»¡¡but¡¡if¡¡the¡¡minor¡¡is
universal¡¡nothing¡¡at¡¡all¡¡can¡¡ever¡¡be¡¡proved¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡16
¡¡¡¡Whenever¡¡one¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡other¡¡problematic£»¡¡there¡¡will
be¡¡a¡¡syllogism¡¡when¡¡the¡¡terms¡¡are¡¡related¡¡as¡¡before£»¡¡and¡¡a¡¡perfect
syllogism¡¡when¡¡the¡¡minor¡¡premiss¡¡is¡¡necessary¡£¡¡If¡¡the¡¡premisses¡¡are
affirmative¡¡the¡¡conclusion¡¡will¡¡be¡¡problematic£»¡¡not¡¡assertoric£»
whether¡¡the¡¡premisses¡¡are¡¡universal¡¡or¡¡not£º¡¡but¡¡if¡¡one¡¡is¡¡affirmative£»
the¡¡other¡¡negative£»¡¡when¡¡the¡¡affirmative¡¡is¡¡necessary¡¡the¡¡conclusion
will¡¡be¡¡problematic£»¡¡not¡¡negative¡¡assertoric£»¡¡but¡¡when¡¡the¡¡negative¡¡is
necessary¡¡the¡¡conclusion¡¡will¡¡be¡¡problematic¡¡negative£»¡¡and
assertoric¡¡negative£»¡¡whether¡¡the¡¡premisses¡¡are¡¡universal¡¡or¡¡not¡£
Possibility¡¡in¡¡the¡¡conclusion¡¡must¡¡be¡¡understood¡¡in¡¡the¡¡same¡¡manner¡¡as
before¡£¡¡There¡¡cannot¡¡be¡¡an¡¡inference¡¡to¡¡the¡¡necessary¡¡negative
proposition£º¡¡for¡¡'not¡¡necessarily¡¡to¡¡belong'¡¡is¡¡different¡¡from
'necessarily¡¡not¡¡to¡¡belong'¡£
¡¡¡¡If¡¡the¡¡premisses¡¡are¡¡affirmative£»¡¡clearly¡¡the¡¡conclusion¡¡which
follows¡¡is¡¡not¡¡necessary¡£¡¡Suppose¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B£»
and¡¡let¡¡B¡¡be¡¡possible¡¡for¡¡all¡¡C¡£¡¡We¡¡shall¡¡have¡¡an¡¡imperfect
syllogism¡¡to¡¡prove¡¡that¡¡A¡¡may¡¡belong¡¡to¡¡all¡¡C¡£¡¡That¡¡it¡¡is¡¡imperfect¡¡is
clear¡¡from¡¡the¡¡proof£º¡¡for¡¡it¡¡will¡¡be¡¡proved¡¡in¡¡the¡¡same¡¡manner¡¡as
above¡£¡¡Again£»¡¡let¡¡A¡¡be¡¡possible¡¡for¡¡all¡¡B£»¡¡and¡¡let¡¡B¡¡necessarily
belong¡¡to¡¡all¡¡C¡£¡¡We¡¡shall¡¡then¡¡have¡¡a¡¡syllogism¡¡to¡¡prove¡¡that¡¡A¡¡may
belong¡¡to¡¡all¡¡C£»¡¡not¡¡that¡¡A¡¡does¡¡belong¡¡to¡¡all¡¡C£º¡¡and¡¡it¡¡is¡¡perfect£»
not¡¡imperfect£º¡¡for¡¡it¡¡is¡¡c
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü