planet¡¡in¡¡an¡¡ellipse¡£¡¡¡¡A¡¡small¡¡disturbance¡¡imparted¡¡to¡¡the¡¡satellite¡¡will¡¡only¡¡change¡¡the¡¡ellipse¡¡to¡¡a¡¡small¡¡amount£»¡¡and¡¡so¡¡the¡¡motion¡¡is¡¡said¡¡to¡¡be¡¡stable¡£¡¡¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡the¡¡disturbance¡¡were¡¡to¡¡make¡¡the¡¡satellite¡¡depart¡¡from¡¡its¡¡initial¡¡elliptic¡¡orbit¡¡in¡¡ever¡¡widening¡¡circuits£»¡¡the¡¡motion¡¡would¡¡be¡¡unstable¡£¡¡¡¡This¡¡case¡¡affords¡¡an¡¡example¡¡of¡¡stable¡¡motion£»¡¡but¡¡I¡¡have¡¡adduced¡¡it¡¡principally¡¡with¡¡the¡¡object¡¡of¡¡illustrating¡¡another¡¡point¡¡not¡¡immediately¡¡connected¡¡with¡¡stability£»¡¡but¡¡important¡¡to¡¡a¡¡proper¡¡comprehension¡¡of¡¡the¡¡theory¡¡of¡¡stability¡£
The¡¡motion¡¡of¡¡a¡¡satellite¡¡about¡¡its¡¡planet¡¡is¡¡one¡¡of¡¡revolution¡¡or¡¡rotation¡£¡¡¡¡When¡¡the¡¡satellite¡¡moves¡¡in¡¡an¡¡ellipse¡¡of¡¡any¡¡given¡¡degree¡¡of¡¡eccentricity£»¡¡there¡¡is¡¡a¡¡certain¡¡amount¡¡of¡¡rotation¡¡in¡¡the¡¡system£»¡¡technically¡¡called¡¡rotational¡¡momentum£»¡¡and¡¡it¡¡is¡¡always¡¡the¡¡same¡¡at¡¡every¡¡part¡¡of¡¡the¡¡orbit¡£¡¡¡¡£¨Moment¡¡of¡¡momentum¡¡or¡¡rotational¡¡momentum¡¡is¡¡measured¡¡by¡¡the¡¡momentum¡¡of¡¡the¡¡satellite¡¡multiplied¡¡by¡¡the¡¡perpendicular¡¡from¡¡the¡¡planet¡¡on¡¡to¡¡the¡¡direction¡¡of¡¡the¡¡path¡¡of¡¡the¡¡satellite¡¡at¡¡any¡¡instant¡££©
Now¡¡if¡¡we¡¡consider¡¡all¡¡the¡¡possible¡¡elliptic¡¡orbits¡¡of¡¡a¡¡satellite¡¡about¡¡its¡¡planet¡¡which¡¡have¡¡the¡¡same¡¡amount¡¡of¡¡¡¨rotational¡¡momentum£»¡¨¡¡we¡¡find¡¡that¡¡the¡¡major¡¡axis¡¡of¡¡the¡¡ellipse¡¡described¡¡will¡¡be¡¡different¡¡according¡¡to¡¡the¡¡amount¡¡of¡¡flattening¡¡£¨or¡¡the¡¡eccentricity£©¡¡of¡¡the¡¡ellipse¡¡described¡£¡¡¡¡A¡¡figure¡¡titled¡¡¡¨A¡¡'family'¡¡of¡¡elliptic¡¡orbits¡¡with¡¡constant¡¡rotational¡¡momentum¡¨¡¡£¨Fig¡£¡¡1£©¡¡illustrates¡¡for¡¡a¡¡given¡¡planet¡¡and¡¡satellite¡¡all¡¡such¡¡orbits¡¡with¡¡constant¡¡rotational¡¡momentum£»¡¡and¡¡with¡¡all¡¡the¡¡major¡¡axes¡¡in¡¡the¡¡same¡¡direction¡£¡¡¡¡It¡¡will¡¡be¡¡observed¡¡that¡¡there¡¡is¡¡a¡¡continuous¡¡transformation¡¡from¡¡one¡¡orbit¡¡to¡¡the¡¡next£»¡¡and¡¡that¡¡the¡¡whole¡¡forms¡¡a¡¡consecutive¡¡group£»¡¡called¡¡by¡¡mathematicians¡¡¡¨a¡¡family¡¨¡¡of¡¡orbits¡£¡¡¡¡In¡¡this¡¡case¡¡the¡¡rotational¡¡momentum¡¡is¡¡constant¡¡and¡¡the¡¡position¡¡of¡¡any¡¡orbit¡¡in¡¡the¡¡family¡¡is¡¡determined¡¡by¡¡the¡¡length¡¡of¡¡the¡¡major¡¡axis¡¡of¡¡the¡¡ellipse£»¡¡the¡¡classification¡¡is¡¡according¡¡to¡¡the¡¡major¡¡axis£»¡¡but¡¡it¡¡might¡¡have¡¡been¡¡made¡¡according¡¡to¡¡anything¡¡else¡¡which¡¡would¡¡cause¡¡the¡¡orbit¡¡to¡¡be¡¡exactly¡¡determinate¡£
I¡¡shall¡¡come¡¡later¡¡to¡¡the¡¡classification¡¡of¡¡all¡¡possible¡¡forms¡¡of¡¡ideal¡¡liquid¡¡stars£»¡¡which¡¡have¡¡the¡¡same¡¡amount¡¡of¡¡rotational¡¡momentum£»¡¡and¡¡the¡¡classification¡¡will¡¡then¡¡be¡¡made¡¡according¡¡to¡¡their¡¡densities£»¡¡but¡¡the¡¡idea¡¡of¡¡orderly¡¡arrangement¡¡in¡¡a¡¡¡¨family¡¨¡¡is¡¡just¡¡the¡¡same¡£
We¡¡thus¡¡arrive¡¡at¡¡the¡¡conception¡¡of¡¡a¡¡definite¡¡type¡¡of¡¡motion£»¡¡with¡¡a¡¡constant¡¡amount¡¡of¡¡rotational¡¡momentum£»¡¡and¡¡a¡¡classification¡¡of¡¡all¡¡members¡¡of¡¡the¡¡family£»¡¡formed¡¡by¡¡all¡¡possible¡¡motions¡¡of¡¡that¡¡type£»¡¡according¡¡to¡¡the¡¡value¡¡of¡¡some¡¡measurable¡¡quantity¡¡£¨this¡¡will¡¡hereafter¡¡be¡¡density£©¡¡which¡¡determines¡¡the¡¡motion¡¡exactly¡£¡¡¡¡In¡¡the¡¡particular¡¡case¡¡of¡¡the¡¡elliptic¡¡motion¡¡used¡¡for¡¡illustration¡¡the¡¡motion¡¡was¡¡stable£»¡¡but¡¡other¡¡cases¡¡of¡¡motion¡¡might¡¡be¡¡adduced¡¡in¡¡which¡¡the¡¡motion¡¡would¡¡be¡¡unstable£»¡¡and¡¡it¡¡would¡¡be¡¡found¡¡that¡¡classification¡¡in¡¡a¡¡family¡¡and¡¡specification¡¡by¡¡some¡¡measurable¡¡quantity¡¡would¡¡be¡¡equally¡¡applicable¡£
A¡¡complex¡¡mechanical¡¡system¡¡may¡¡be¡¡capable¡¡of¡¡motion¡¡in¡¡several¡¡distinct¡¡modes¡¡or¡¡types£»¡¡and¡¡the¡¡motions¡¡corresponding¡¡to¡¡each¡¡such¡¡type¡¡may¡¡be¡¡arranged¡¡as¡¡before¡¡in¡¡families¡£¡¡¡¡For¡¡the¡¡sake¡¡of¡¡simplicity¡¡I¡¡will¡¡suppose¡¡that¡¡only¡¡two¡¡types¡¡are¡¡possible£»¡¡so¡¡that¡¡there¡¡will¡¡only¡¡be¡¡two¡¡families£»¡¡and¡¡the¡¡rotational¡¡momentum¡¡is¡¡to¡¡be¡¡constant¡£¡¡¡¡The¡¡two¡¡types¡¡of¡¡motion¡¡will¡¡have¡¡certain¡¡features¡¡in¡¡common¡¡which¡¡we¡¡denote¡¡in¡¡a¡¡sort¡¡of¡¡shorthand¡¡by¡¡the¡¡letter¡¡A¡£¡¡¡¡Similarly¡¡the¡¡two¡¡types¡¡may¡¡be¡¡described¡¡as¡¡A¡¡£«¡¡a¡¡and¡¡A¡¡£«¡¡b£»¡¡so¡¡that¡¡a¡¡and¡¡b¡¡denote¡¡the¡¡specific¡¡differences¡¡which¡¡discriminate¡¡the¡¡families¡¡from¡¡one¡¡another¡£¡¡¡¡Now¡¡following¡¡in¡¡imagination¡¡the¡¡family¡¡of¡¡the¡¡type¡¡A¡¡£«¡¡a£»¡¡let¡¡us¡¡begin¡¡with¡¡the¡¡case¡¡where¡¡the¡¡specific¡¡difference¡¡a¡¡is¡¡well¡¡marked¡£¡¡¡¡As¡¡we¡¡cast¡¡our¡¡eyes¡¡along¡¡the¡¡series¡¡forming¡¡the¡¡family£»¡¡we¡¡find¡¡the¡¡difference¡¡a¡¡becoming¡¡less¡¡conspicuous¡£¡¡¡¡It¡¡gradually¡¡dwindles¡¡until¡¡it¡¡disappears£»¡¡beyond¡¡this¡¡point¡¡it¡¡either¡¡becomes¡¡reversed£»¡¡or¡¡else¡¡the¡¡type¡¡has¡¡ceased¡¡to¡¡be¡¡a¡¡possible¡¡one¡£¡¡¡¡In¡¡our¡¡shorthand¡¡we¡¡have¡¡started¡¡with¡¡A¡¡£«¡¡a£»¡¡and¡¡have¡¡watched¡¡the¡¡characteristic¡¡a¡¡dwindling¡¡to¡¡zero¡£¡¡¡¡When¡¡it¡¡vanishes¡¡we¡¡have¡¡reached¡¡a¡¡type¡¡which¡¡may¡¡be¡¡specified¡¡as¡¡A£»¡¡beyond¡¡this¡¡point¡¡the¡¡type¡¡would¡¡be¡¡A¡¡¡¡¡a¡¡or¡¡would¡¡be¡¡impossible¡£
Following¡¡the¡¡A¡¡£«¡¡b¡¡type¡¡in¡¡the¡¡same¡¡way£»¡¡b¡¡is¡¡at¡¡first¡¡well¡¡marked£»¡¡it¡¡dwindles¡¡to¡¡zero£»¡¡and¡¡finally¡¡may¡¡become¡¡negative¡£¡¡¡¡Hence¡¡in¡¡shorthand¡¡this¡¡second¡¡family¡¡may¡¡be¡¡described¡¡as¡¡A¡¡£«¡¡b£»¡£¡£¡£A£»¡£¡£¡£A¡¡¡¡¡b¡£
In¡¡each¡¡family¡¡there¡¡is¡¡one¡¡single¡¡member¡¡which¡¡is¡¡indistinguishable¡¡from¡¡a¡¡member¡¡of¡¡the¡¡other¡¡family£»¡¡it¡¡is¡¡called¡¡by¡¡Poincare¡¡a¡¡form¡¡of¡¡bifurcation¡£¡¡¡¡It¡¡is¡¡this¡¡conception¡¡of¡¡a¡¡form¡¡of¡¡bifurcation¡¡which¡¡forms¡¡the¡¡important¡¡consideration¡¡in¡¡problems¡¡dealing¡¡with¡¡the¡¡forms¡¡of¡¡liquid¡¡or¡¡gaseous¡¡bodies¡¡in¡¡rotation¡£
But¡¡to¡¡return¡¡to¡¡the¡¡general¡¡question£»thus¡¡far¡¡the¡¡stability¡¡of¡¡these¡¡families¡¡has¡¡not¡¡been¡¡considered£»¡¡and¡¡it¡¡is¡¡the¡¡stability¡¡which¡¡renders¡¡this¡¡way¡¡of¡¡looking¡¡at¡¡the¡¡matter¡¡so¡¡valuable¡£¡¡¡¡It¡¡may¡¡be¡¡proved¡¡that¡¡if¡¡before¡¡the¡¡point¡¡of¡¡bifurcation¡¡the¡¡type¡¡A¡¡£«¡¡a¡¡was¡¡stable£»¡¡then¡¡A¡¡£«¡¡b¡¡must¡¡have¡¡been¡¡unstable¡£¡¡¡¡Further¡¡as¡¡a¡¡and¡¡b¡¡each¡¡diminish¡¡A¡¡£«¡¡a¡¡becomes¡¡less¡¡pronouncedly¡¡stable£»¡¡and¡¡A¡¡£«¡¡b¡¡less¡¡unstable¡£¡¡¡¡On¡¡reaching¡¡the¡¡point¡¡of¡¡bifurcation¡¡A¡¡£«¡¡a¡¡has¡¡just¡¡ceased¡¡to¡¡be¡¡stable£»¡¡or¡¡what¡¡amounts¡¡to¡¡the¡¡same¡¡thing¡¡is¡¡just¡¡becoming¡¡unstable£»¡¡and¡¡the¡¡converse¡¡is¡¡true¡¡of¡¡the¡¡A¡¡£«¡¡b¡¡family¡£¡¡¡¡After¡¡passing¡¡the¡¡point¡¡of¡¡bifurcation¡¡A¡¡£«¡¡a¡¡has¡¡become¡¡definitely¡¡unstable¡¡and¡¡A¡¡£«¡¡b¡¡has¡¡become¡¡stable¡£¡¡¡¡Hence¡¡the¡¡point¡¡of¡¡bifurcation¡¡is¡¡also¡¡a¡¡point¡¡of¡¡¡¨exchange¡¡of¡¡stabilities¡¡between¡¡the¡¡two¡¡types¡£¡¨¡¡¡¡£¨In¡¡order¡¡not¡¡to¡¡complicate¡¡unnecessarily¡¡this¡¡explanation¡¡of¡¡a¡¡general¡¡principle¡¡I¡¡have¡¡not¡¡stated¡¡fully¡¡all¡¡the¡¡cases¡¡that¡¡may¡¡occur¡£¡¡¡¡Thus£º¡¡¡¡firstly£»¡¡after¡¡bifurcation¡¡A¡¡£«¡¡a¡¡may¡¡be¡¡an¡¡impossible¡¡type¡¡and¡¡A¡¡£«¡¡a¡¡will¡¡then¡¡stop¡¡at¡¡this¡¡point£»¡¡or¡¡secondly£»¡¡A¡¡£«¡¡b¡¡may¡¡have¡¡been¡¡an¡¡impossible¡¡type¡¡before¡¡bifurcation£»¡¡and¡¡will¡¡only¡¡begin¡¡to¡¡be¡¡a¡¡real¡¡one¡¡after¡¡it£»¡¡or¡¡thirdly£»¡¡both¡¡A¡¡£«¡¡a¡¡and¡¡A¡¡£«¡¡b¡¡may¡¡be¡¡impossible¡¡after¡¡the¡¡point¡¡of¡¡bifurcation£»¡¡in¡¡which¡¡case¡¡they¡¡coalesce¡¡and¡¡disappear¡£¡¡¡¡This¡¡last¡¡case¡¡shows¡¡that¡¡types¡¡arise¡¡and¡¡disappear¡¡in¡¡pairs£»¡¡and¡¡that¡¡on¡¡appearance¡¡or¡¡before¡¡disappearance¡¡one¡¡must¡¡be¡¡stable¡¡and¡¡the¡¡other¡¡unstable¡££©
In¡¡nature¡¡it¡¡is¡¡of¡¡course¡¡only¡¡the¡¡stable¡¡types¡¡of¡¡motion¡¡which¡¡can¡¡persist¡¡for¡¡more¡¡than¡¡a¡¡short¡¡time¡£¡¡¡¡Thus¡¡the¡¡task¡¡of¡¡the¡¡physical¡¡evolutionist¡¡is¡¡to¡¡determine¡¡the¡¡forms¡¡of¡¡bifurcation£»¡¡at¡¡which¡¡he¡¡must£»¡¡as¡¡it¡¡were£»¡¡change¡¡carriages¡¡in¡¡the¡¡evolutionary¡¡journey¡¡so¡¡as¡¡always¡¡to¡¡follow¡¡the¡¡stable¡¡route¡£¡¡¡¡He¡¡must¡¡besides¡¡be¡¡able¡¡to¡¡indicate¡¡some¡¡natural¡¡process¡¡which¡¡shall¡¡correspond¡¡in¡¡effect¡¡to¡¡the¡¡ideal¡¡arrangement¡¡of¡¡the¡¡several¡¡types¡¡of¡¡motion¡¡in¡¡families¡¡with¡¡gradually¡¡changing¡¡specific¡¡differences¡£¡¡¡¡Although£»¡¡as¡¡we¡¡shall¡¡see¡¡hereafter£»¡¡it¡¡may¡¡frequently¡¡or¡¡even¡¡generally¡¡be¡¡impossible¡¡to¡¡specify¡¡with¡¡exactness¡¡the¡¡forms¡¡of¡¡bifurcation¡¡in¡¡the¡¡process¡¡of¡¡evolution£»¡¡yet¡¡the¡¡conception¡¡is¡¡one¡¡of¡¡fundamental¡¡importance¡£
The¡¡ideas¡¡involved¡¡in¡¡this¡¡sketch¡¡are¡¡no¡¡doubt¡¡somewhat¡¡recondite£»¡¡but¡¡I¡¡hope¡¡to¡¡render¡¡them¡¡clearer¡¡to¡¡the¡¡non¡mathematical¡¡reader¡¡by¡¡homologous¡¡considerations¡¡in¡¡other¡¡fields¡¡of¡¡thought¡¡£¨I¡¡considered¡¡this¡¡subject¡¡in¡¡my¡¡Presidential¡¡address¡¡to¡¡the¡¡British¡¡Association¡¡in¡¡1905£»¡¡¡¨Report¡¡of¡¡the¡¡75th¡¡Meeting¡¡of¡¡the¡¡British¡¡Assoc¡£¡¨¡¡£¨S¡£¡¡Africa£»¡¡1905£©£»¡¡London£»¡¡1906£»¡¡page¡¡3¡£¡¡¡¡Some¡¡reviewers¡¡treated¡¡my¡¡speculations¡¡as¡¡fanciful£»¡¡but¡¡as¡¡I¡¡believe¡¡that¡¡this¡¡was¡¡due¡¡generally¡¡to¡¡misapprehension£»¡¡and¡¡as¡¡I¡¡hold¡¡that¡¡homologous¡¡considerations¡¡as¡¡to¡¡stability¡¡and¡¡instability¡¡are¡¡really¡¡applicable¡¡to¡¡evolution¡¡of¡¡all¡¡sorts£»¡¡I¡¡have¡¡thought¡¡it¡¡well¡¡to¡¡return¡¡to¡¡the¡¡subject¡¡in¡¡the¡¡present¡¡paper¡££©£»¡¡and¡¡I¡¡shall¡¡pass¡¡on¡¡thence¡¡to¡¡illustrations¡¡which¡¡will¡¡teach¡¡us¡¡something¡¡of¡¡the¡¡evolution¡¡of¡¡stellar¡¡systems¡£
States¡¡or¡¡governments¡¡are¡¡organised¡¡schemes¡¡of¡¡action¡¡amongst¡¡groups¡¡of¡¡men£»¡¡and¡¡they¡¡belong¡¡to¡¡various¡¡types¡¡to¡¡which¡¡generic¡¡names£»¡¡such¡¡as¡¡autocracy£»¡¡aristocracy¡¡or¡¡democracy£»¡¡are¡¡somewhat¡¡loosely¡¡applied¡£¡¡¡¡A¡¡definite¡¡type¡¡of¡¡government¡¡corresponds¡¡to¡¡one¡¡of¡¡our¡¡types¡¡of¡¡motion£»¡¡and¡¡while¡¡retaining¡¡its¡¡type¡¡it¡¡undergoes¡¡a¡¡slow¡¡change¡¡as¡¡the¡¡civilisation¡¡and¡¡character¡¡of¡¡the¡¡people¡¡change£»¡¡and¡¡as¡¡the¡¡relationship¡¡of¡¡the¡¡nation¡¡to¡¡other¡¡nations¡¡changes¡£¡¡¡¡In¡¡the¡¡language¡¡used¡¡before£»¡¡the¡¡government¡¡belongs¡¡to¡¡a¡¡family£»¡¡and¡¡as¡¡time¡¡advances¡¡we¡¡proceed¡¡through¡¡the¡¡successive¡¡members¡¡of¡¡the¡¡family¡£¡¡¡¡A¡¡government¡¡possesses¡¡a¡¡certain¡¡degree¡¡of¡¡stability¡¡hardly¡¡measurable¡¡in¡¡numbers¡¡howeverto¡¡resist¡¡disintegrating¡¡influences¡¡such¡¡as¡¡may¡¡arise¡¡from¡¡wars£»¡¡famines£»¡¡and¡¡internal¡¡dissensions¡£¡¡¡¡This¡¡stability¡¡gradually¡¡rises¡¡to¡¡a¡¡maximum¡¡and¡¡gradually¡¡declines¡£¡¡¡¡The¡¡degree¡¡of¡¡stability¡¡at¡¡any¡¡epoch¡¡will¡¡depend¡¡on¡¡the¡¡fitness¡¡of¡¡some¡¡leading¡¡feature¡¡of¡¡the¡¡government¡¡to¡¡suit¡¡the¡¡slowly¡¡altering¡¡circumstances£»¡¡and¡¡that¡¡feature¡¡corresponds¡¡to¡¡the¡¡characteristic¡¡denoted¡¡by¡¡a¡¡in¡¡the¡¡physical¡¡problem¡£¡¡¡¡A¡¡time¡¡at¡¡length¡¡arrives¡¡when¡¡the¡¡stability¡¡vanishes£»¡¡and¡¡the¡¡slightest¡¡shock¡¡will¡¡overturn¡¡the¡¡government¡£¡¡¡¡At¡¡this¡¡stage¡¡we¡¡have¡¡reached¡¡the¡¡crisis¡¡of¡¡a¡¡point¡¡of¡¡bifurcation£»¡¡and¡¡there¡¡will¡¡then¡¡be¡¡some¡¡circumstance£»¡¡apparently¡¡quite¡¡insignificant¡¡and¡¡almost¡¡unnoticed£»¡¡which¡¡is¡¡such¡¡as¡¡to¡¡prevent¡¡the¡¡occurrence¡¡of¡¡anarchy¡£¡¡¡¡This¡¡circumstance¡¡or¡¡condition¡¡is¡¡what¡¡we¡¡typified¡¡as¡¡b¡£¡¡¡¡Insignificant¡¡although¡¡it¡¡may¡¡seem£»¡¡it¡¡has¡¡started¡¡the¡¡government¡¡on¡¡a¡¡new¡¡career¡¡of¡¡stability¡¡by¡¡imparting¡¡to¡¡it¡¡a¡¡new¡¡type¡£¡¡¡¡It¡¡grows¡¡in¡¡importance£»¡¡the¡¡form¡¡of¡¡government¡¡becomes¡¡obviously¡¡different£»¡¡and¡¡its¡¡stability¡¡increases¡£¡¡¡¡Then¡¡in¡¡its¡¡turn¡¡this¡¡newly¡¡acquired¡¡stability¡¡declines£»¡¡and¡¡we¡¡pass¡¡on¡¡to¡¡a¡¡new¡¡crisis¡¡or¡¡revolution¡£¡¡¡¡There¡¡is¡¡thus¡¡a¡¡series¡¡of¡¡¡¨points¡¡of¡¡bifurcation¡¨¡¡in¡¡history¡¡at¡¡which¡¡the¡¡continuity¡¡of¡¡political¡¡history¡¡is¡¡maintained¡¡by¡¡means¡¡of¡¡changes¡¡in¡¡the¡¡type¡¡of¡¡government¡£¡¡¡¡These¡¡ideas¡¡seem£»¡¡to¡¡me¡¡at¡¡least£»¡¡to¡¡give¡¡a¡¡true¡¡account¡¡of¡¡the¡¡history¡¡of¡¡states£»¡¡and¡¡I¡¡contend¡¡that¡¡it¡¡is¡¡no¡¡mere¡¡fanciful¡¡analogy¡¡but¡¡a¡¡true¡¡homology£»¡¡when¡¡in¡¡both¡¡realms¡¡of¡¡thought¡¡the¡¡physical¡¡and¡¡the¡¡politicalwe¡¡perceive¡¡the¡¡existence¡¡of¡¡forms¡¡of¡¡bifurcation¡¡and¡¡of¡¡exchanges¡¡of¡¡stability¡£
Further¡¡than¡¡this£»¡¡I¡¡would¡¡ask¡¡whether¡¡the¡¡same¡¡train¡¡of¡¡ideas¡¡does¡¡not¡¡also¡¡apply¡¡to¡¡the¡¡evolution¡¡of¡¡animals£¿¡¡¡¡A¡¡species¡¡is¡¡well¡¡adapted¡¡to¡¡its¡¡environment¡¡when¡¡the¡¡individual¡¡can¡¡withstand¡¡the¡¡shocks¡¡of¡¡famine¡¡or¡¡the¡¡attacks¡¡and¡¡competition¡¡of¡¡other¡¡animals£»¡¡it¡¡then¡¡possesses¡¡a¡¡h