content¡¡is¡¡this£»¡¡that¡¡through¡¡repulsion¡¡alone¡¡matter¡¡would¡¡not¡¡be¡¡spatial¡¡Matter¡¡being¡¡presupposed
as¡¡filling¡¡space£»¡¡it¡¡is¡¡credited¡¡with¡¡continuity£»¡¡the¡¡ground¡¡of¡¡which¡¡is¡¡assumed¡¡to¡¡be¡¡the¡¡force¡¡of
attraction¡£
Now¡¡if¡¡the¡¡merit¡¡of¡¡such¡¡a¡¡construction¡¡of¡¡matter¡¡were¡¡at¡¡most¡¡that¡¡of¡¡an¡¡analysis¡¡£¨though¡¡a¡¡merit
diminished¡¡by¡¡the¡¡faulty¡¡exposition£©£»¡¡still¡¡the¡¡fundamental¡¡thought£»¡¡namely£»¡¡the¡¡derivation¡¡of¡¡matter
from¡¡these¡¡two¡¡opposite¡¡determinations¡¡as¡¡its¡¡fundamental¡¡forces£»¡¡must¡¡always¡¡be¡¡highly
esteemed¡£¡¡Kant¡¡is¡¡chiefly¡¡concerned¡¡to¡¡banish¡¡the¡¡vulgar¡¡mechanistic¡¡way¡¡of¡¡thinking¡¡which¡¡stops
short¡¡at¡¡the¡¡one¡¡determination¡¡of¡¡impenetrability£»¡¡of¡¡self¡determined¡¡and¡¡self¡subsistent¡¡puncticity£»
and¡¡converts¡¡into¡¡something¡¡external¡¡the¡¡opposite¡¡determination£»¡¡the¡¡relation¡¡of¡¡matter¡¡within
itself¡¡or¡¡the¡¡relation¡¡of¡¡a¡¡plurality¡¡of¡¡matters£»¡¡which¡¡in¡¡turn¡¡are¡¡regarded¡¡as¡¡particular¡¡ones¡a¡¡way¡¡of
thinking¡¡which£»¡¡as¡¡Kant¡¡says£»¡¡will¡¡admit¡¡no¡¡motive¡¡forces¡¡except¡¡pressure¡¡and¡¡thrust£»¡¡that¡¡is£»¡¡only
action¡¡from¡¡without¡£¡¡This¡¡external¡¡manner¡¡of¡¡thinking¡¡always¡¡presupposes¡¡motion¡¡as¡¡already
externally¡¡present¡¡in¡¡matter£»¡¡and¡¡it¡¡does¡¡not¡¡occur¡¡to¡¡it¡¡to¡¡regard¡¡motion¡¡as¡¡something¡¡immanent
and¡¡to¡¡comprehend¡¡motion¡¡itself¡¡in¡¡matter£»¡¡which¡¡latter¡¡is¡¡thus¡¡assumed¡¡as£»¡¡on¡¡its¡¡own¡¡account£»
motionless¡¡and¡¡inert¡£¡¡This¡¡stand¡point¡¡has¡¡before¡¡it¡¡only¡¡ordinary¡¡mechanics£»¡¡not¡¡immanent¡¡and
free¡¡motion¡£¡¡It¡¡is¡¡true¡¡that¡¡Kant¡¡sublates¡¡this¡¡externality¡¡in¡¡so¡¡far¡¡as¡¡he¡¡makes¡¡attraction¡¡£¨the
relation¡¡of¡¡matters¡¡to¡¡one¡¡another¡¡in¡¡so¡¡far¡¡as¡¡these¡¡are¡¡assumed¡¡as¡¡separated¡¡from¡¡one¡¡another£»
or¡¡matter¡¡generally¡¡in¡¡its¡¡self¡externality£©¡¡a¡¡force¡¡of¡¡matter¡¡itself£»¡¡still£»¡¡on¡¡the¡¡other¡¡hand£»¡¡his¡¡two
fundamental¡¡forces¡¡within¡¡matter¡¡remain¡¡external¡¡to¡¡and¡¡completely¡¡independent¡¡of¡¡each¡¡other¡£
The¡¡fixed¡¡difference¡¡of¡¡these¡¡two¡¡forces¡¡attributed¡¡to¡¡them¡¡from¡¡that¡¡external¡¡standpoint¡¡is¡¡no¡¡less
null¡¡than¡¡any¡¡other¡¡distinction¡¡must¡¡show¡¡itself¡¡to¡¡be¡¡which£»¡¡in¡¡respect¡¡of¡¡its¡¡specific¡¡content£»¡¡is
made¡¡into¡¡something¡¡supposedly¡¡fixed£»¡¡because¡¡these¡¡forces¡¡are¡¡only¡¡moments¡¡which¡¡pass¡¡over
into¡¡each¡¡other£»¡¡as¡¡we¡¡saw¡¡above¡¡when¡¡they¡¡were¡¡considered¡¡in¡¡their¡¡truth¡£¡¡I¡¡go¡¡on¡¡to¡¡consider
these¡¡other¡¡distinctions¡¡as¡¡they¡¡are¡¡stated¡¡by¡¡Kant¡£
He¡¡defines¡¡the¡¡force¡¡of¡¡attraction¡¡as¡¡a¡¡penetrative¡¡force¡¡by¡¡which¡¡one¡¡bit¡¡of¡¡matter¡¡can¡¡act¡¡directly
on¡¡the¡¡parts¡¡of¡¡another¡¡even¡¡beyond¡¡the¡¡area¡¡of¡¡contact£»¡¡the¡¡force¡¡of¡¡repulsion£»¡¡on¡¡the¡¡other¡¡hand£»
he¡¡defines¡¡as¡¡a¡¡surface¡¡force¡¡through¡¡which¡¡bits¡¡of¡¡matter¡¡can¡¡act¡¡on¡¡each¡¡other¡¡only¡¡in¡¡the
common¡¡area¡¡of¡¡contact¡£¡¡The¡¡reason¡¡adduced¡¡that¡¡the¡¡latter¡¡can¡¡be¡¡only¡¡a¡¡surface¡¡force¡¡is¡¡as
follows£º¡¡'The¡¡parts¡¡in¡¡contact¡¡each¡¡limit¡¡the¡¡sphere¡¡of¡¡action¡¡of¡¡the¡¡other£»¡¡and¡¡the¡¡force¡¡of
repulsion¡¡cannot¡¡move¡¡any¡¡more¡¡distant¡¡part¡¡except¡¡through¡¡the¡¡agency¡¡of¡¡the¡¡intervening¡¡parts£»¡¡an
immediate¡¡action¡¡of¡¡one¡¡part¡¡of¡¡matter¡¡on¡¡another¡¡passing¡¡right¡¡across¡¡these¡¡intervening¡¡parts¡¡by
forces¡¡of¡¡expansion¡¡£¨which¡¡means¡¡here£»¡¡forces¡¡of¡¡repulsion£©¡¡is¡¡impossible¡£'
But¡¡here¡¡we¡¡must¡¡remember¡¡that¡¡in¡¡assuming¡¡'nearer'¡¡or¡¡'more¡¡distant'¡¡parts¡¡of¡¡matter£»¡¡the¡¡same
distinction¡¡would¡¡likewise¡¡arise¡¡with¡¡respect¡¡to¡¡attraction£»¡¡namely£»¡¡that¡¡though¡¡one¡¡atom¡¡acted¡¡on
another£»¡¡yet¡¡a¡¡third£»¡¡more¡¡distant¡¡atom¡¡£¨between¡¡which¡¡and¡¡the¡¡first¡¡atom£»¡¡the¡¡second¡¡atom¡¡would
be£©£»¡¡would¡¡first¡¡enter¡¡into¡¡the¡¡sphere¡¡of¡¡attraction¡¡of¡¡the¡¡intervening¡¡atom¡¡nearer¡¡to¡¡it£»¡¡therefore¡¡the
first¡¡atom¡¡would¡¡not¡¡have¡¡an¡¡immediate£»¡¡simple¡¡action¡¡on¡¡the¡¡third£»¡¡from¡¡which¡¡it¡¡would¡¡follow
that¡¡the¡¡action¡¡of¡¡the¡¡force¡¡of¡¡attraction£»¡¡like¡¡that¡¡of¡¡repulsion£»¡¡is¡¡equally¡¡mediated¡£¡¡Further£»¡¡the
genuine¡¡penetration¡¡of¡¡the¡¡force¡¡of¡¡attraction¡¡could¡¡of¡¡necessity¡¡consist¡¡only¡¡in¡¡this£»¡¡that¡¡every
part¡¡of¡¡matter¡¡was¡¡in¡¡and¡¡for¡¡itself¡¡attractive£»¡¡not¡¡that¡¡a¡¡certain¡¡number¡¡of¡¡atoms¡¡behaved¡¡passively
and¡¡only¡¡one¡¡atom¡¡actively¡£¡¡But¡¡we¡¡must¡¡at¡¡once¡¡remark¡¡with¡¡respect¡¡to¡¡the¡¡force¡¡of¡¡repulsion
itself¡¡that¡¡in¡¡the¡¡passage¡¡quoted£»¡¡'parts¡¡in¡¡contact'¡¡are¡¡mentioned¡¡which¡¡implies¡¡solidity¡¡and
continuity¡¡of¡¡a¡¡matter¡¡already¡¡finished¡¡and¡¡complete¡¡which¡¡would¡¡not¡¡permit¡¡the¡¡passage
through¡¡it¡¡of¡¡a¡¡repelling¡¡force¡£¡¡But¡¡this¡¡solidity¡¡of¡¡matter¡¡in¡¡which¡¡parts¡¡are¡¡in¡¡contact¡¡and¡¡are¡¡no
longer¡¡separated¡¡by¡¡the¡¡void¡¡already¡¡presupposes¡¡that¡¡the¡¡force¡¡of¡¡repulsion¡¡is¡¡sublated£»¡¡according
to¡¡the¡¡sensuous¡¡conception¡¡of¡¡repulsion¡¡which¡¡prevails¡¡here£»¡¡parts¡¡in¡¡contact¡¡are¡¡to¡¡be¡¡taken¡¡as
those¡¡which¡¡do¡¡not¡¡repel¡¡each¡¡other¡£¡¡It¡¡therefore¡¡follows£»¡¡quite¡¡tautologically£»¡¡that¡¡where¡¡repulsion
is¡¡assumed¡¡to¡¡be¡¡not£»¡¡there¡¡no¡¡repulsion¡¡can¡¡take¡¡place¡£¡¡But¡¡from¡¡this¡¡nothing¡¡else¡¡follows¡¡which
could¡¡serve¡¡to¡¡determine¡¡the¡¡force¡¡of¡¡repulsion¡£¡¡However£»¡¡reflection¡¡on¡¡the¡¡statement¡¡that¡¡parts¡¡in
contact¡¡are¡¡in¡¡contact¡¡only¡¡in¡¡so¡¡far¡¡as¡¡they¡¡hold¡¡themselves¡¡apart£»¡¡leads¡¡directly¡¡to¡¡the¡¡conclusion
that¡¡the¡¡force¡¡of¡¡repulsion¡¡is¡¡not¡¡merely¡¡on¡¡the¡¡surface¡¡of¡¡matter¡¡but¡¡within¡¡the¡¡sphere¡¡which¡¡was
supposed¡¡to¡¡be¡¡only¡¡a¡¡sphere¡¡of¡¡attraction¡£
Kant¡¡assumes¡¡further¡¡that¡¡'through¡¡the¡¡force¡¡of¡¡attraction£»¡¡matter¡¡only¡¡occupies¡¡space¡¡but¡¡does¡¡not
fill¡¡it'£»¡¡and¡¡'because¡¡matter¡¡through¡¡the¡¡force¡¡of¡¡attraction¡¡does¡¡not¡¡fill¡¡space£»¡¡this¡¡force¡¡can¡¡act
across¡¡empty¡¡space¡¡since¡¡there¡¡is¡¡no¡¡intervening¡¡matter¡¡to¡¡limit¡¡it'¡£¡¡This¡¡distinction¡¡is¡¡much¡¡the¡¡same
as¡¡the¡¡one¡¡mentioned¡¡above¡¡where¡¡a¡¡determination¡¡was¡¡supposed¡¡to¡¡belong¡¡to¡¡the¡¡concept¡¡of¡¡a
thing¡¡but¡¡not¡¡to¡¡be¡¡contained¡¡in¡¡it£»¡¡here£»¡¡then£»¡¡matter¡¡is¡¡supposed¡¡only¡¡to¡¡occupy¡¡a¡¡space¡¡but¡¡not¡¡to
fill¡¡it¡£¡¡There¡¡it¡¡is¡¡repulsion£»¡¡if¡¡we¡¡stop¡¡at¡¡the¡¡first¡¡determination¡¡of¡¡matter£»¡¡through¡¡which¡¡the¡¡ones
repel¡¡one¡¡another¡¡and¡¡so¡¡are¡¡only¡¡negatively¡¡related¡¡to¡¡one¡¡another£»¡¡here¡¡that¡¡means£»¡¡by¡¡empty
space¡£¡¡Here£»¡¡however£»¡¡it¡¡is¡¡the¡¡force¡¡of¡¡attraction¡¡which¡¡keeps¡¡space¡¡empty£»¡¡it¡¡does¡¡not¡¡fill¡¡space
by¡¡its¡¡connection¡¡of¡¡the¡¡atoms£»¡¡in¡¡other¡¡words£»¡¡it¡¡keeps¡¡the¡¡atoms¡¡in¡¡a¡¡negative¡¡relation¡¡to¡¡one
another¡£¡¡We¡¡see¡¡that¡¡Kant¡¡here¡¡unconsciously¡¡realises¡¡what¡¡is¡¡implicit¡¡in¡¡the¡¡nature¡¡of¡¡the¡¡subject
matter£»¡¡when¡¡he¡¡attributes¡¡to¡¡the¡¡force¡¡of¡¡attraction¡¡precisely¡¡what£»¡¡in¡¡accordance¡¡with¡¡the¡¡first
determination£»¡¡he¡¡attributed¡¡to¡¡the¡¡opposite¡¡force¡£¡¡While¡¡he¡¡was¡¡busy¡¡with¡¡establishing¡¡the
difference¡¡between¡¡the¡¡two¡¡forces£»¡¡it¡¡happened¡¡that¡¡one¡¡had¡¡passed¡¡over¡¡into¡¡the¡¡other¡£¡¡Thus
through¡¡repulsion£»¡¡on¡¡the¡¡other¡¡hand£»¡¡matter¡¡is¡¡supposed¡¡to¡¡fill¡¡a¡¡space£»¡¡and¡¡consequently¡¡through
repulsion¡¡the¡¡empty¡¡space¡¡left¡¡by¡¡the¡¡force¡¡of¡¡attraction¡¡vanishes¡£¡¡In¡¡point¡¡of¡¡fact¡¡repulsion£»¡¡in
doing¡¡away¡¡with¡¡empty¡¡space£»¡¡also¡¡destroys¡¡the¡¡negative¡¡relation¡¡of¡¡the¡¡atoms¡¡or¡¡ones£»¡¡that¡¡is£»
their¡¡repulsion¡¡of¡¡one¡¡another£»¡¡in¡¡¡other¡¡words£»¡¡repulsion¡¡is¡¡determined¡¡as¡¡the¡¡opposite¡¡of¡¡itself¡£
To¡¡this¡¡effacing¡¡of¡¡the¡¡differences¡¡there¡¡is¡¡added¡¡the¡¡confusion¡¡arising¡¡from¡¡the¡¡fact¡¡that£»¡¡as¡¡we
observed¡¡at¡¡the¡¡beginning£»¡¡Kant's¡¡exposition¡¡of¡¡the¡¡opposed¡¡forces¡¡is¡¡analytic£»¡¡and¡¡whereas¡¡matter
is¡¡supposed¡¡to¡¡be¡¡derived¡¡from¡¡its¡¡elements£»¡¡it¡¡is¡¡presented¡¡throughout¡¡the¡¡entire¡¡discourse¡¡as
already¡¡formed¡¡and¡¡constituted¡£¡¡In¡¡the¡¡definition¡¡of¡¡surface¡¡and¡¡penetrative¡¡force¡¡both¡¡are¡¡assumed
as¡¡motive¡¡forces¡¡by¡¡means¡¡of¡¡which¡¡matter¡¡is¡¡supposed¡¡to¡¡be¡¡able¡¡to¡¡act¡¡in¡¡one¡¡or¡¡other¡¡of¡¡these
ways¡£¡¡Here£»¡¡therefore£»¡¡they¡¡are¡¡represented¡¡as¡¡forces£»¡¡not¡¡through¡¡which¡¡matter¡¡first¡¡comes¡¡into
being¡¡but¡¡through¡¡which¡¡matter£»¡¡as¡¡an¡¡already¡¡finished¡¡product£»¡¡is¡¡only¡¡set¡¡in¡¡motion¡£¡¡But¡¡in¡¡so¡¡far
as¡¡we¡¡are¡¡speaking¡¡of¡¡the¡¡forces¡¡through¡¡which¡¡different¡¡bodies¡¡act¡¡on¡¡one¡¡another¡¡and¡¡are¡¡set¡¡in
motion£»¡¡this¡¡is¡¡something¡¡quite¡¡different¡¡from¡¡the¡¡determination¡¡and¡¡relation¡¡which¡¡these¡¡forces
were¡¡supposed¡¡to¡¡have¡¡as¡¡£§constitutive£§¡¡moments¡¡of¡¡matter¡£
The¡¡same¡¡opposition¡¡of¡¡attractive¡¡and¡¡repulsive¡¡forces¡¡is¡¡made¡¡by¡¡their¡¡more¡¡developed¡¡form¡¡of
centripetal¡¡and¡¡centrifugal¡¡forces¡£¡¡These¡¡appear¡¡to¡¡offer¡¡an¡¡essential¡¡distinction£»¡¡since¡¡in¡¡their
sphere¡¡there¡¡is¡¡a¡¡fixed¡¡single¡¡one£»¡¡a¡¡centre£»¡¡in¡¡relation¡¡to¡¡which¡¡the¡¡other¡¡ones¡¡behave¡¡as¡¡not¡¡for
themselves£»¡¡so¡¡that¡¡the¡¡difference¡¡between¡¡the¡¡forces¡¡can¡¡be¡¡linked¡¡to¡¡this¡¡presupposed¡¡difference
between¡¡a¡¡single¡¡central¡¡one¡¡and¡¡the¡¡others¡¡which¡¡are¡¡not¡¡independent¡¡relatively¡¡to¡¡it¡£¡¡But¡¡if¡¡they
are¡¡to¡¡be¡¡used¡¡for¡¡explanation¡for¡¡which¡¡purpose¡¡they¡¡are¡¡assumed¡¡to¡¡be¡¡£¨like¡¡the¡¡forces¡¡of
repulsion¡¡and¡¡attraction£©¡¡in¡¡an¡¡inverse¡¡quantitative¡¡ratio¡¡so¡¡that¡¡the¡¡one¡¡increases¡¡as¡¡the¡¡other
decreases¡then¡¡the¡¡phenomenon¡¡of¡¡the¡¡motion¡¡and¡¡its¡¡inequality¡¡ought¡¡to¡¡be¡¡the¡¡result¡¡of¡¡these
forces¡¡which¡¡were¡¡assumed¡¡for¡¡the¡¡purpose¡¡of¡¡explanation¡£¡¡However£»¡¡one¡¡need¡¡only¡¡examine¡¡the
accounts¡¡£¨any¡¡of¡¡them¡¡will¡¡do£©¡¡of¡¡a¡¡phenomenon¡¡like¡¡the¡¡unequal¡¡velocity¡¡of¡¡a¡¡planet¡¡in¡¡its¡¡orbit
round¡¡the¡¡sun£»¡¡based¡¡on¡¡the¡¡opposition¡¡of¡¡these¡¡forces£»¡¡to¡¡become¡¡aware¡¡of¡¡the¡¡confusion¡¡which
prevails¡¡in¡¡such¡¡explanations£»¡¡and¡¡the¡¡impossibility¡¡of¡¡disentangling¡¡the¡¡magnitudes¡¡of¡¡the¡¡forces£»¡¡so
that¡¡the¡¡one¡¡which¡¡in¡¡the¡¡explanation¡¡is¡¡assumed¡¡to¡¡be¡¡decreasing¡¡can¡¡just¡¡as¡¡well¡¡be¡¡assumed¡¡to
be¡¡increasing£»¡¡and¡¡vice¡¡versa¡£¡¡To¡¡make¡¡this¡¡evident¡¡would¡¡require¡¡a¡¡lengthier¡¡exposition¡¡than
could¡¡be¡¡given¡¡here£»¡¡but¡¡what¡¡is¡¡necessary¡¡for¡¡this¡¡purpose¡¡is¡¡adduced¡¡later¡¡on¡¡in¡¡connection¡¡with
the¡¡inverted¡¡relation¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡Section¡¡Two£º¡¡Magnitude¡¡£¨Quantity£©
The¡¡difference¡¡between¡¡quantity¡¡and¡¡quality¡¡has¡¡been¡¡stated¡£¡¡Quality¡¡is¡¡the¡¡first£»¡¡immediate
determinateness£»¡¡quantity¡¡is¡¡the¡¡determinateness¡¡which¡¡has¡¡become¡¡indifferent¡¡to¡¡being£»¡¡a¡¡limit
which¡¡is¡¡just¡¡as¡¡much¡¡no¡¡limit£»¡¡being¡for¡self¡¡which¡¡is¡¡absolutely¡¡identical¡¡with¡¡being¡for¡other¡a
repulsion¡¡of¡¡the¡¡many¡¡ones¡¡which¡¡is¡¡directly¡¡the¡¡non¡repulsion£»¡¡the¡¡continuity¡¡of¡¡them¡£
Because¡¡that¡¡which¡¡is¡¡for¡¡itself¡¡is¡¡now¡¡posited¡¡as¡¡not¡¡excluding¡¡its¡¡other£»¡¡but¡¡rather¡¡as¡¡affirmatively
continuing¡¡itself¡¡into¡¡it£»¡¡it¡¡is¡¡otherness¡¡in¡¡so¡¡far¡¡as¡¡determinate¡¡being¡¡again¡¡appears¡¡in¡¡this
continuity¡¡and¡¡its¡¡determinateness¡¡is¡¡at¡¡the¡¡same¡¡time¡¡no¡¡longer¡¡in¡¡a¡¡simple¡¡self¡relation£»¡¡no¡¡longer
an¡¡immediate¡¡determinateness¡¡of¡¡the¡¡determinately¡¡existent¡¡something£»¡¡but¡¡is¡¡posited¡¡as
self¡repelling£»¡¡as¡¡in¡¡fact¡¡having¡¡the¡¡relation¡to¡self¡¡as¡¡a¡¡determinateness¡¡in¡¡another¡¡something
£¨which¡¡is¡¡for¡¡itself£»¡¡and¡¡since¡¡they¡¡are¡¡at¡¡the¡¡same¡¡time¡¡indifferent£»¡¡relationless¡¡limits¡¡reflected¡¡into
themselves£»¡¡the¡¡determinateness¡¡in¡¡general¡¡is¡¡outside¡¡itself£»¡¡an¡¡absolutely¡¡self¡external
determinateness¡¡and¡¡an¡¡equally¡¡external¡¡something£»¡¡such¡¡a¡¡limit£»¡¡the¡¡indifference¡¡of¡¡the¡¡limit¡¡within
itself¡¡and¡¡of¡¡the¡¡something