belongs¡¡to¡¡the¡¡special¡¡science¡¡of¡¡the¡¡concrete¡£¡¡Examples¡¡of¡¡this¡¡kind¡¡concerning¡¡the¡¡law¡¡of¡¡falling
bodies¡¡and¡¡free£»¡¡celestial¡¡motion¡¡will¡¡be¡¡found¡¡in¡¡the¡¡Encyclopedia¡£¡¡of¡¡the¡¡Phil¡£¡¡Sciences£»¡¡3rd
ed¡££»¡¡Sections¡¡267¡¡and¡¡270£»¡¡Remark¡£¡¡In¡¡this¡¡connection¡¡the¡¡general¡¡observation¡¡may¡¡be¡¡made¡¡that
the¡¡different¡¡forms¡¡in¡¡which¡¡measure¡¡is¡¡realised¡¡belong¡¡also¡¡to¡¡different¡¡spheres¡¡of¡¡natural¡¡reality¡£
The¡¡complete£»¡¡abstract¡¡indifference¡¡of¡¡developed¡¡measure£»¡¡i¡£e¡£¡¡the¡¡laws¡¡of¡¡measure£»¡¡can¡¡only¡¡be
manifested¡¡in¡¡the¡¡sphere¡¡of¡¡mechanics¡¡in¡¡which¡¡the¡¡concrete¡¡bodily¡¡factor¡¡is¡¡itself¡¡only¡¡abstract
matter£»¡¡the¡¡qualitative¡¡differences¡¡of¡¡such¡¡matter¡¡are¡¡essentially¡¡quantitatively¡¡determined£»¡¡space
and¡¡time¡¡are¡¡the¡¡purest¡¡forms¡¡of¡¡externality£»¡¡and¡¡the¡¡multitude¡¡of¡¡matters£»¡¡masses£»¡¡intensity¡¡of
weight£»¡¡are¡¡similarly¡¡external¡¡determinations¡¡which¡¡have¡¡their¡¡characteristic¡¡determinateness¡¡in¡¡the
quantitative¡¡element¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡such¡¡quantitative¡¡determinateness¡¡of¡¡abstract¡¡matter¡¡is
deranged¡¡simply¡¡by¡¡the¡¡plurality¡¡of¡¡conflicting¡¡qualities¡¡in¡¡the¡¡inorganic¡¡sphere¡¡a¡¡rid¡¡still¡¡more¡¡even
in¡¡the¡¡organic¡¡world¡£¡¡But¡¡here¡¡there¡¡is¡¡involved¡¡not¡¡merely¡¡a¡¡conflict¡¡of¡¡qualities£»¡¡for¡¡measure¡¡here
is¡¡subordinated¡¡to¡¡higher¡¡relationships¡¡and¡¡the¡¡immanent¡¡development¡¡of¡¡measure¡¡tends¡¡to¡¡be
reduced¡¡to¡¡the¡¡simple¡¡form¡¡of¡¡immediate¡¡measure¡£¡¡The¡¡limbs¡¡of¡¡the¡¡animal¡¡organism¡¡have¡¡a
measure¡¡which£»¡¡as¡¡a¡¡simple¡¡quantum£»¡¡stands¡¡in¡¡a¡¡ratio¡¡to¡¡the¡¡other¡¡quanta¡¡of¡¡the¡¡other¡¡limbs£»¡¡the
proportions¡¡of¡¡the¡¡human¡¡body¡¡are¡¡the¡¡fixed¡¡ratio¡¡of¡¡such¡¡quanta¡£¡¡Natural¡¡science¡¡is¡¡stil1¡¡far¡¡from
possessing¡¡an¡¡insight¡¡into¡¡the¡¡connection¡¡between¡¡such¡¡quantities¡¡and¡¡the¡¡organic¡¡functions¡¡on
which¡¡they¡¡wholly¡¡depend¡£¡¡But¡¡the¡¡readiest¡¡example¡¡of¡¡the¡¡reduction¡¡of¡¡an¡¡immanent¡¡measure¡¡to¡¡a
merely¡¡externally¡¡determined¡¡magnitude¡¡is¡¡motion¡£¡¡In¡¡the¡¡celestial¡¡bodies¡¡it¡¡is¡¡free¡¡motion£»¡¡a
motion¡¡which¡¡is¡¡determined¡¡solely¡¡by¡¡the¡¡Notion¡¡and¡¡whose¡¡quantitative¡¡elements¡¡therefore¡¡equally
depend¡¡solely¡¡on¡¡the¡¡Notion¡¡£¨see¡¡above£©£»¡¡but¡¡such¡¡free¡¡motion¡¡is¡¡reduced¡¡by¡¡the¡¡living¡¡creature¡¡to
arbitrary¡¡or¡¡mechanically¡¡regular£»¡¡i¡£e¡£¡¡a¡¡wholly¡¡abstract£»¡¡formal¡¡motion¡£
And¡¡in¡¡the¡¡realm¡¡of¡¡spirit¡¡there¡¡is¡¡still¡¡less¡¡to¡¡be¡¡found¡¡a¡¡characteristic£»¡¡free¡¡development¡¡of
measure¡£¡¡It¡¡is¡¡quite¡¡evident£»¡¡for¡¡example£»¡¡that¡¡a¡¡republican¡¡constitution¡¡like¡¡that¡¡of¡¡Athens£»¡¡or¡¡an
aristocratic¡¡constitution¡¡tempered¡¡by¡¡democracy£»¡¡is¡¡suitable¡¡only¡¡for¡¡States¡¡of¡¡a¡¡certain¡¡size£»¡¡and
that¡¡in¡¡a¡¡developed¡¡civil¡¡society¡¡the¡¡numbers¡¡of¡¡individuals¡¡belonging¡¡to¡¡different¡¡occupations¡¡stand
in¡¡a¡¡certain¡¡relations¡¡to¡¡one¡¡another£»¡¡but¡¡all¡¡this¡¡yields¡¡neither¡¡laws¡¡of¡¡measure¡¡nor¡¡characteristic
forms¡¡of¡¡it¡£¡¡In¡¡the¡¡spiritual¡¡sphere¡¡as¡¡such¡¡there¡¡occur¡¡differences¡¡of¡¡intensity¡¡of¡¡character£»
strength¡¡of¡¡imagination£»¡¡sensations£»¡¡general¡¡ideas£»¡¡and¡¡so¡¡on£»¡¡but¡¡the¡¡determination¡¡does¡¡not¡¡go
beyond¡¡the¡¡indefiniteness¡¡of¡¡strength¡¡or¡¡weakness¡£¡¡How¡¡insipid¡¡and¡¡completely¡¡empty¡¡the
so¡called¡¡laws¡¡turn¡¡out¡¡to¡¡be¡¡which¡¡have¡¡been¡¡laid¡¡down¡¡about¡¡the¡¡relation¡¡of¡¡strength¡¡and
weakness¡¡of¡¡sensations£»¡¡general¡¡ideas£»¡¡and¡¡so¡¡on£»¡¡comes¡¡home¡¡to¡¡one¡¡on¡¡reading¡¡the¡¡psychologies
which¡¡occupy¡¡themselves¡¡with¡¡such¡¡laws¡£
Chapter¡¡1£º¡¡Specific¡¡Quantity
A¡¡The¡¡Specific¡¡Quantum
B¡¡Specifying¡¡Measure
¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡The¡¡Rule
¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡Specifying¡¡Measure
¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡Relation¡¡of¡¡the¡¡Two¡¡Sides¡¡as¡¡Qualities
Remark
The¡¡exposition¡¡here¡¡of¡¡the¡¡connection¡¡between¡¡the¡¡qualitative¡¡nature¡¡of¡¡something¡¡and¡¡its
quantitative¡¡determination¡¡has¡¡its¡¡application¡¡in¡¡the¡¡already¡¡indicated¡¡example¡¡of¡¡motion¡£¡¡First¡¡of
all£»¡¡in¡¡velocity¡¡as¡¡the¡¡direct¡¡ratio¡¡of¡¡space¡¡traversed¡¡and¡¡time¡¡elapsed£»¡¡the¡¡magnitude¡¡of¡¡time¡¡is
taken¡¡as¡¡denominator¡¡while¡¡that¡¡of¡¡space¡¡is¡¡taken¡¡as¡¡numerator¡£¡¡If¡¡velocity¡¡as¡¡such¡¡is¡¡only¡¡a¡¡ratio
of¡¡the¡¡space¡¡and¡¡time¡¡in¡¡a¡¡motion£»¡¡it¡¡is¡¡immaterial¡¡which¡¡of¡¡the¡¡two¡¡moments¡¡is¡¡to¡¡be¡¡considered¡¡as
amount¡¡or¡¡as¡¡unit¡£¡¡Space£»¡¡however£»¡¡like¡¡weight¡¡in¡¡specific¡¡gravity£»¡¡is¡¡an¡¡external£»¡¡real¡¡whole¡¡as
such¡¡¡¡¡hence¡¡amount¡¡¡¡¡whereas¡¡time£»¡¡like¡¡volume£»¡¡is¡¡the¡¡ideal£»¡¡negative¡¡factor£»¡¡the¡¡side¡¡of¡¡unity¡£
But¡¡here¡¡there¡¡essentially¡¡belongs¡¡the¡¡more¡¡important¡¡ratio£»¡¡that¡¡which¡¡holds¡¡between¡¡the
magnitudes¡¡of¡¡space¡¡and¡¡time¡¡in¡¡free¡¡motion£»¡¡at¡¡first£»¡¡in¡¡the¡¡still¡¡conditioned¡¡motion¡¡of¡¡a¡¡falling
body¡¡where¡¡the¡¡time¡¡factor¡¡is¡¡determined¡¡as¡¡a¡¡root¡¡and¡¡the¡¡space¡¡factor¡¡as¡¡a¡¡square£»¡¡or¡¡in¡¡the
absolutely¡¡free¡¡motion¡¡of¡¡the¡¡celestial¡¡bodies¡¡where¡¡the¡¡period¡¡of¡¡revolution¡¡is¡¡lower¡¡by¡¡one¡¡power
than¡¡the¡¡distance¡¡from¡¡the¡¡sun£»¡¡the¡¡former¡¡being¡¡a¡¡square¡¡and¡¡the¡¡latter¡¡a¡¡cube¡£¡¡Fundamental
relationships¡¡of¡¡this¡¡kind¡¡rest¡¡on¡¡the¡¡nature¡¡of¡¡the¡¡interrelated¡¡qualities¡¡of¡¡space¡¡and¡¡time¡¡and¡¡on¡¡the
kind¡¡of¡¡relation¡¡in¡¡which¡¡they¡¡stand£»¡¡either¡¡as¡¡a¡¡mechanical¡¡motion£»¡¡i¡£e¡£¡¡as¡¡an¡¡unfree¡¡motion¡¡which
is¡¡not¡¡determined¡¡by¡¡the¡¡Notion¡¡of¡¡the¡¡moments¡¡of¡¡space¡¡and¡¡time£»¡¡or¡¡as¡¡the¡¡descent¡¡of¡¡a¡¡falling
body£»¡¡i¡£e¡£¡¡as¡¡a¡¡conditionally¡¡free¡¡motion£»¡¡or¡¡as¡¡the¡¡absolutely¡¡free¡¡celestial¡¡motion¡£¡¡These¡¡kinds¡¡of
motion£»¡¡no¡¡less¡¡than¡¡their¡¡laws£»¡¡rest¡¡on¡¡the¡¡development¡¡of¡¡the¡¡Notion¡¡of¡¡their¡¡moments£»¡¡of¡¡space
and¡¡time£»¡¡since¡¡these¡¡qualities¡¡as¡¡such¡¡£¨space¡¡and¡¡time£©¡¡prove¡¡to¡¡be¡¡in¡¡themselves£»¡¡i¡£e¡£¡¡in¡¡their
Notion£»¡¡inseparable¡¡and¡¡their¡¡quantitative¡¡relationship¡¡is¡¡the¡¡being¡for¡self¡¡of¡¡measure£»¡¡is¡¡only¡¡one
measure¡determination¡£
In¡¡regard¡¡to¡¡the¡¡absolute¡¡relations¡¡of¡¡measure£»¡¡it¡¡is¡¡well¡¡to¡¡bear¡¡in¡¡mind¡¡that¡¡the¡¡mathematics¡¡of
nature£»¡¡if¡¡it¡¡is¡¡to¡¡be¡¡worthy¡¡of¡¡the¡¡name¡¡of¡¡science£»¡¡must¡¡be¡¡essentially¡¡the¡¡science¡¡of¡¡measures¡¡¡¡¡a
science¡¡for¡¡which¡¡it¡¡is¡¡true¡¡much¡¡has¡¡been¡¡done¡¡empirically£»¡¡but¡¡little¡¡as¡¡yet¡¡from¡¡a¡¡strictly¡¡scientific£»
that¡¡is£»¡¡philosophical¡¡point¡¡of¡¡view¡£¡¡Mathematical¡¡principles¡¡of¡¡natural¡¡philosophy¡as¡¡Newton
called¡¡his¡¡work¡if¡¡they¡¡are¡¡to¡¡fulfil¡¡this¡¡description¡¡in¡¡a¡¡profounder¡¡sense¡¡than¡¡that¡¡accorded¡¡to
them¡¡by¡¡Newton¡¡and¡¡by¡¡the¡¡entire¡¡Baconian¡¡species¡¡of¡¡philosophy¡¡and¡¡science£»¡¡must¡¡contain
things¡¡of¡¡quite¡¡a¡¡different¡¡character¡¡in¡¡order¡¡to¡¡bring¡¡light¡¡into¡¡these¡¡still¡¡obscure¡¡regions¡¡which¡¡are£»
however£»¡¡worthy¡¡in¡¡the¡¡highest¡¡degree¡¡of¡¡consideration¡£¡¡
It¡¡is¡¡a¡¡great¡¡service¡¡to¡¡ascertain¡¡the¡¡empirical¡¡numbers¡¡of¡¡nature£»¡¡e¡£g¡££»¡¡the¡¡distances¡¡of¡¡the¡¡planets
from¡¡one¡¡another£»¡¡but¡¡it¡¡is¡¡an¡¡infinitely¡¡greater¡¡service¡¡when¡¡the¡¡empirical¡¡quanta¡¡are¡¡made¡¡to
disappear¡¡and¡¡they¡¡are¡¡raised¡¡into¡¡a¡¡universal¡¡form¡¡of¡¡determinations¡¡of¡¡quantity¡¡so¡¡that¡¡they
become¡¡moments¡¡of¡¡a¡¡law¡¡or¡¡of¡¡measure¡¡¡¡¡immortal¡¡services¡¡which¡¡Galileo¡¡for¡¡the¡¡descent¡¡of
falling¡¡bodies¡¡and¡¡Kepler¡¡for¡¡the¡¡motion¡¡of¡¡the¡¡celestial¡¡bodies£»¡¡have¡¡achieved¡£¡¡The¡¡laws¡¡they
discovered¡¡they¡¡have¡¡proved¡¡in¡¡this¡¡sense£»¡¡that¡¡they¡¡have¡¡shown¡¡the¡¡whole¡¡compass¡¡of¡¡the
particulars¡¡of¡¡observation¡¡to¡¡correspond¡¡to¡¡them¡£¡¡But¡¡yet¡¡a¡¡still¡¡higher¡¡proof¡¡is¡¡required¡¡for¡¡these
laws£»¡¡nothing¡¡else£»¡¡that¡¡is£»¡¡than¡¡that¡¡their¡¡quantitative¡¡relations¡¡be¡¡known¡¡from¡¡the¡¡qualities¡¡or
specific¡¡Notions¡¡of¡¡time¡¡and¡¡space¡¡that¡¡are¡¡correlated¡£
Of¡¡this¡¡kind¡¡of¡¡proof¡¡there¡¡is¡¡still¡¡no¡¡trace¡¡in¡¡the¡¡said¡¡mathematical¡¡principles¡¡of¡¡natural¡¡philosophy£»
neither¡¡is¡¡there¡¡in¡¡the¡¡subsequent¡¡works¡¡of¡¡this¡¡kind¡£¡¡It¡¡has¡¡already¡¡been¡¡remarked¡¡in¡¡connection
with¡¡the¡¡show¡¡of¡¡mathematical¡¡proofs¡¡of¡¡certain¡¡relationships¡¡in¡¡nature£»¡¡a¡¡show¡¡based¡¡on¡¡the
misuse¡¡of¡¡the¡¡infinitely¡¡small£»¡¡that¡¡it¡¡is¡¡absurd¡¡to¡¡try¡¡todemonstrate¡¡such¡¡proofs¡¡on¡¡a¡¡strictly
mathematical¡¡basis£»¡¡i¡£e¡£¡¡neither¡¡empirically¡¡nor¡¡from¡¡the¡¡standpoint¡¡of¡¡the¡¡Notion¡£¡¡These¡¡proofs
presuppose¡¡thir¡¡theorems£»¡¡those¡¡very¡¡laws£»¡¡from¡¡experience£»¡¡what¡¡they¡¡succeed¡¡in¡¡doing¡¡is¡¡to
reduce¡¡them¡¡to¡¡abstract¡¡expressions¡¡and¡¡convenient¡¡formulae¡£
Undoubtedly¡¡the¡¡time¡¡will¡¡come¡¡when£»¡¡with¡¡a¡¡clearer¡¡understanding¡¡of¡¡what¡¡mathematics¡¡can
accomplish¡¡and¡¡has¡¡accomplished£»¡¡the¡¡entire£»¡¡real¡¡merit¡¡of¡¡Newton¡¡as¡¡against¡¡Kepler¡¡¡ª¡¡the¡¡sham
scaffolding¡¡of¡¡proofs¡¡being¡¡discarded¡¡¡ª¡¡will¡¡clearly¡¡be¡¡seen¡¡to¡¡be¡¡restricted¡¡to¡¡the¡¡said
transformation¡¡of¡¡Kepler's¡¡formula¡¡and¡¡to¡¡the¡¡elementary¡¡analytical¡¡treatment¡¡accorded¡¡to¡¡it¡£
Undoubtedly¡¡the¡¡time¡¡will¡¡come¡¡when£»¡¡with¡¡a¡¡clearer¡¡understanding¡¡of¡¡what¡¡mathematics¡¡can
accomplish¡¡and¡¡has¡¡accomplished£»¡¡he¡¡restricted¡¡to¡¡the¡¡said¡¡transformation¡¡of¡¡Kepler's¡¡formula¡¡and
to¡¡the¡¡lem¡¡en£»¡¡ta¡¡analytical¡¡treatment¡¡accorded¡¡to¡¡it¡£
C¡¡Being¡for¡self¡¡in¡¡Measure
Chapter¡¡2¡¡Real¡¡Measure
A¡¡The¡¡Relation¡¡of¡¡Self¡Subsistent¡¡Measures
¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡Combination¡¡of¡¡Two¡¡Measures
¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡Measure¡¡of¡¡a¡¡Series¡¡of¡¡Measure¡¡Relations
¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡Elective¡¡Affinity
Remark£º¡¡Berthollet¡¡on¡¡Chemical¡¡Affinity¡¡and¡¡Berzelius's¡¡Theory¡¡of¡¡it
B¡¡Nodal¡¡Line¡¡of¡¡Measure¡¡Relations
Remark£º¡¡Examples¡¡of¡¡Such¡¡Nodal¡¡Lines£»¡¡the¡¡Maxim£»¡¡¡®Nature¡¡Does¡¡Not
Make¡¡Leaps¡¯
The¡¡system¡¡of¡¡natural¡¡numbers¡¡already¡¡shows¡¡a¡¡nodal¡¡line¡¡of¡¡qualitative¡¡moments¡¡which¡¡emerge¡¡in
a¡¡merely¡¡external¡¡succession¡£¡¡It¡¡is¡¡on¡¡the¡¡one¡¡hand¡¡a¡¡merely¡¡quantitative¡¡progress¡¡and¡¡regress£»¡¡a
perpetual¡¡adding¡¡or¡¡subtracting£»¡¡so¡¡that¡¡each¡¡number¡¡has¡¡the¡¡same¡¡arithmetical¡¡relation¡¡to¡¡the¡¡one
before¡¡it¡¡and¡¡after¡¡it£»¡¡as¡¡these¡¡have¡¡to¡¡their¡¡predecessors¡¡and¡¡successors£»¡¡and¡¡so¡¡on¡£¡¡But¡¡the
numbers¡¡so¡¡formed¡¡also¡¡have¡¡a¡¡specific¡¡relation¡¡to¡¡other¡¡numbers¡¡preceding¡¡and¡¡following¡¡them£»
being¡¡either¡¡an¡¡integral¡¡multiple¡¡of¡¡one¡¡of¡¡them¡¡or¡¡else¡¡a¡¡power¡¡or¡¡a¡¡root¡£¡¡In¡¡the¡¡musical¡¡scale
which¡¡is¡¡built¡¡up¡¡on¡¡quantitative¡¡differences£»¡¡a¡¡quantum¡¡gives¡¡rise¡¡to¡¡an¡¡harmonious¡¡relation¡¡without
its¡¡own¡¡relation¡¡to¡¡those¡¡on¡¡either¡¡side¡¡of¡¡it¡¡in¡¡the¡¡scale¡¡differing¡¡from¡¡the¡¡relation¡¡between¡¡these
again¡¡and¡¡their¡¡predecessors¡¡and¡¡successors¡£¡¡While¡¡successive¡¡notes¡¡seem¡¡to¡¡be¡¡at¡¡an
ever¡increasing¡¡distance¡¡from¡¡the¡¡keynote£»¡¡or¡¡numbers¡¡in¡¡succeeding¡¡each¡¡other¡¡arithmetically
seem¡¡only¡¡to¡¡become¡¡other¡¡numbers£»¡¡the¡¡fact¡¡is¡¡that¡¡there¡¡suddenly¡¡emerges¡¡a¡¡return£»¡¡a¡¡surprising
accord£»¡¡of¡¡which¡¡no¡¡hint¡¡was¡¡given¡¡by¡¡the¡¡quality¡¡of¡¡what¡¡immediately¡¡preceded¡¡it£»¡¡but¡¡which
appears¡¡as¡¡an¡¡actio¡¡in¡¡distans£»¡¡as¡¡a¡¡connection¡¡with¡¡something¡¡far¡¡removed¡£¡¡There¡¡is¡¡a¡¡sudden
interruption¡¡of¡¡the¡¡succession¡¡of¡¡merely¡¡indifferent¡¡relations¡¡which¡¡do¡¡not¡¡alter¡¡the¡¡preceding
specific¡¡reality¡¡or¡¡do¡¡not¡¡even¡¡form¡¡any¡¡such£»¡¡and¡¡although¡¡the¡¡succession¡¡is¡¡continued
quantitatively¡¡in¡¡the¡¡same¡¡manner£»¡¡a¡¡specific¡¡relation¡¡breaks¡¡in¡¡per¡¡saltum¡£
Such¡¡qualitative¡¡nodes¡¡and¡¡leaps¡¡occur¡¡in¡¡chemical¡¡combinations¡¡when¡¡the¡¡mixture¡¡proportions¡¡are
progressively¡¡altered£»¡¡at¡¡certain¡¡points¡¡in¡¡the¡¡scale¡¡of¡¡mixtures£»¡¡two¡¡substances¡¡form¡¡products
exhibiting¡¡particular¡¡qualities¡£¡¡These¡¡produ