¡¶science of logic¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

science of logic- µÚ31²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
identity¡¡with¡¡it¡¡which£»¡¡as¡¡objective¡¡Notion¡¡it¡¡possesses¡¡in¡¡and¡¡for¡¡itself£»¡¡also¡¡a¡¡posited¡¡identity¡£

In¡¡this¡¡consummation¡¡in¡¡which¡¡it¡¡has¡¡the¡¡form¡¡of¡¡freedom¡¡even¡¡in¡¡its¡¡objectivity£»¡¡the¡¡adequate
Notion¡¡is¡¡the¡¡Idea¡£¡¡Reason£»¡¡which¡¡is¡¡the¡¡sphere¡¡of¡¡the¡¡Idea£»¡¡is¡¡the¡¡self¡­revealed¡¡truth¡¡in¡¡which
the¡¡Notion¡¡possesses¡¡the¡¡realisation¡¡that¡¡is¡¡wholly¡¡adequate¡¡to¡¡it£»¡¡and¡¡is¡¡free£»¡¡inasmuch¡¡as¡¡it
cognises¡¡this¡¡its¡¡objective¡¡world¡¡in¡¡its¡¡subjectivity¡¡and¡¡its¡¡subjectivity¡¡in¡¡its¡¡objective¡¡world¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£§The¡¡above¡¡is¡¡reproduced¡¡in¡¡full£»¡¡pages¡¡577¡¡to¡¡597¡££§




THE¡¡DOCTRINE¡¡OF¡¡THE¡¡NOTION
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Section¡¡One£º¡¡Subjectivity

The¡¡Notion¡¡is£»¡¡in¡¡the¡¡first¡¡instance£»¡¡formal£»¡¡the¡¡Notion¡¡in¡¡its¡¡beginning¡¡or¡¡the¡¡immediate¡¡Notion¡£
In¡¡the¡¡immediate¡¡unity£»¡¡its¡¡difference¡¡or¡¡positedness¡¡is¡¡itself¡¡at¡¡first¡¡simple¡¡and¡¡only¡¡an¡¡illusory
being¡¡£§Schein£§£»¡¡so¡¡that¡¡the¡¡moments¡¡of¡¡the¡¡difference¡¡are¡¡immediately¡¡the¡¡totality¡¡of¡¡the¡¡Notion
and¡¡are¡¡simply¡¡the¡¡Notion¡¡as¡¡such¡£

Secondly£»¡¡however£»¡¡because¡¡it¡¡is¡¡absolute¡¡negativity£»¡¡it¡¡sunders¡¡itself¡¡and¡¡posits¡¡itself¡¡as¡¡the
negative¡¡or¡¡as¡¡the¡¡other¡¡of¡¡itself£»¡¡and¡¡further£»¡¡because¡¡as¡¡yet¡¡it¡¡is¡¡only¡¡the¡¡immediate¡¡Notion£»¡¡this
positing¡¡or¡¡differentiation¡¡is¡¡characterised¡¡by¡¡the¡¡fact¡¡that¡¡the¡¡moments¡¡become¡¡indifferent¡¡to¡¡one
another¡¡and¡¡each¡¡becomes¡¡for¡¡itself£»¡¡in¡¡this¡¡partition£»¡¡its¡¡unity¡¡is¡¡still¡¡only¡¡an¡¡external¡¡connection¡£
As¡¡such¡¡connection¡¡of¡¡its¡¡moments£»¡¡which¡¡are¡¡posited¡¡as¡¡self¡­subsistent¡¡and¡¡indifferent£»¡¡it¡¡is
Judgment¡£

Thirdly£»¡¡though¡¡the¡¡judgment¡¡does¡¡contain¡¡the¡¡unity¡¡of¡¡the¡¡Notion¡¡that¡¡has¡¡vanished¡¡into¡¡its
self¡­subsistent¡¡moments£»¡¡yet¡¡this¡¡unity¡¡is¡¡not¡¡posited¡£¡¡It¡¡becomes¡¡so¡¡through¡¡the¡¡dialectical
movement¡¡of¡¡the¡¡judgment£»¡¡through¡¡which¡¡it¡¡has¡¡become¡¡the¡¡Syllogism£»¡¡the¡¡Notion¡¡posited¡¡in¡¡its
completeness£»¡¡for¡¡in¡¡the¡¡syllogism¡¡there¡¡is¡¡posited¡¡not¡¡only¡¡the¡¡moments¡¡of¡¡the¡¡Notion¡¡as
self¡­subsistent¡¡extremes£»¡¡but¡¡also¡¡their¡¡mediating¡¡unity¡£

But¡¡since¡¡this¡¡unity¡¡itself¡¡as¡¡the¡¡unifying¡¡middle£»¡¡and¡¡the¡¡moments¡¡as¡¡self¡­subsistent¡¡extremes£»
are¡¡in¡¡the¡¡first¡¡instance¡¡immediately¡¡opposed¡¡to¡¡one¡¡another£»¡¡this¡¡contradictory¡¡relationship¡¡that
occurs¡¡in¡¡the¡¡formal¡¡syllogism¡¡sublates¡¡itself£»¡¡and¡¡the¡¡completeness¡¡of¡¡the¡¡Notion¡¡passes¡¡over
into¡¡the¡¡unity¡¡of¡¡the¡¡totality£»¡¡the¡¡subjectivity¡¡of¡¡the¡¡Notion¡¡into¡¡its¡¡Objectivity¡£

Chapter¡¡1¡¡The¡¡Notion

Understanding¡¡is¡¡the¡¡term¡¡usually¡¡employed¡¡to¡¡express¡¡the¡¡faculty¡¡of¡¡notions£»¡¡as¡¡so¡¡used£»¡¡it¡¡is
distinguished¡¡from¡¡the¡¡faculty¡¡of¡¡judgment¡¡and¡¡the¡¡faculty¡¡of¡¡syllogisms£»¡¡of¡¡the¡¡formal¡¡reason¡¡But
it¡¡is¡¡with¡¡reason¡¡that¡¡it¡¡is¡¡especially¡¡contrasted£»¡¡in¡¡that¡¡case£»¡¡however£»¡¡it¡¡does¡¡not¡¡signify¡¡the¡¡faculty
of¡¡the¡¡notion¡¡in¡¡general£»¡¡but¡¡of¡¡determinate¡¡notions£»¡¡and¡¡the¡¡idea¡¡prevails¡¡that¡¡the¡¡notion¡¡is¡¡only¡¡a
determinate¡¡notion¡£¡¡When¡¡the¡¡understanding¡¡in¡¡this¡¡signification¡¡is¡¡distinguished¡¡from¡¡the¡¡formal
faculty¡¡of¡¡judgment¡¡and¡¡from¡¡the¡¡formal¡¡reason£»¡¡it¡¡is¡¡to¡¡be¡¡taken¡¡as¡¡the¡¡faculty¡¡of¡¡the¡¡single
determinate¡¡notion¡£¡¡For¡¡the¡¡judgment¡¡and¡¡the¡¡syllogism¡¡or¡¡reason¡¡are£»¡¡as¡¡formal£»¡¡only¡¡a¡¡product¡¡of
the¡¡understanding¡¡since¡¡they¡¡stand¡¡under¡¡the¡¡form¡¡of¡¡the¡¡abstract¡¡determinateness¡¡of¡¡the¡¡Notion¡£
Here£»¡¡however£»¡¡the¡¡Notion¡¡emphatically¡¡does¡¡not¡¡rank¡¡as¡¡something¡¡merely¡¡abstractly
determinate£»¡¡consequently£»¡¡the¡¡understanding¡¡is¡¡to¡¡be¡¡distinguished¡¡from¡¡reason¡¡only¡¡in¡¡the¡¡sense
that¡¡the¡¡former¡¡is¡¡merely¡¡the¡¡faculty¡¡of¡¡the¡¡notion¡¡in¡¡general¡£

This¡¡universal¡¡Notion£»¡¡which¡¡we¡¡have¡¡now¡¡to¡¡consider¡¡here£»¡¡contains¡¡the¡¡three¡¡moments£º
universality£»¡¡particularity¡¡and¡¡individuality¡£¡¡The¡¡difference¡¡and¡¡the¡¡determinations¡¡which¡¡the
Notion¡¡gives¡¡itself¡¡in¡¡its¡¡distinguishing£»¡¡constitute¡¡the¡¡side¡¡which¡¡was¡¡previously¡¡called¡¡positedness¡£
As¡¡this¡¡is¡¡identical¡¡in¡¡the¡¡Notion¡¡with¡¡being¡­in¡­and¡­for¡­self£»¡¡each¡¡of¡¡these¡¡moments¡¡is¡¡no¡¡less¡¡the
whole¡¡Notion¡¡than¡¡it¡¡is¡¡a¡¡determinate¡¡Notion¡¡and¡¡a¡¡determination¡¡of¡¡the¡¡Notion¡£

In¡¡the¡¡first¡¡instance£»¡¡it¡¡is¡¡the¡¡pure¡¡Notion¡¡or¡¡the¡¡determination¡¡of¡¡universality¡£¡¡But¡¡the¡¡pure¡¡or
universal¡¡Notion¡¡is¡¡also¡¡only¡¡a¡¡determinate¡¡or¡¡particular¡¡Notion£»¡¡which¡¡takes¡¡its¡¡place¡¡alongside
other¡¡Notions¡£¡¡Because¡¡the¡¡Notion¡¡is¡¡a¡¡totality£»¡¡and¡¡therefore¡¡in¡¡its¡¡universality¡¡or¡¡pure¡¡identical
self¡­relation¡¡is¡¡essentially¡¡a¡¡determining¡¡and¡¡a¡¡distinguishing£»¡¡it¡¡therefore¡¡contains¡¡within¡¡itself¡¡the
standard¡¡by¡¡which¡¡this¡¡form¡¡of¡¡its¡¡self¡­identity£»¡¡in¡¡pervading¡¡and¡¡embracing¡¡all¡¡the¡¡moments£»¡¡no
less¡¡immediately¡¡determines¡¡itself¡¡to¡¡be¡¡only¡¡the¡¡universal¡¡over¡¡against¡¡the¡¡distinguishedness¡¡of¡¡the
moments¡£

Secondly£»¡¡the¡¡Notion¡¡is¡¡thereby¡¡posited¡¡as¡¡this¡¡particular¡¡or¡¡determinate¡¡Notion£»¡¡distinct¡¡from
others¡£

Thirdly£»¡¡individuality¡¡is¡¡the¡¡Notion¡¡reflecting¡¡itself¡¡out¡¡of¡¡the¡¡difference¡¡into¡¡absolute¡¡negativity¡£
This¡¡is£»¡¡at¡¡the¡¡same¡¡time£»¡¡the¡¡moment¡¡in¡¡which¡¡it¡¡has¡¡passed¡¡out¡¡of¡¡its¡¡identity¡¡into¡¡its¡¡otherness£»
and¡¡becomes¡¡the¡¡judgment¡£

A¡¡The¡¡Universal¡¡Notion¡¡

The¡¡pure¡¡Notion¡¡is¡¡the¡¡absolutely¡¡infinite£»¡¡unconditioned¡¡and¡¡free¡£¡¡It¡¡is¡¡here£»¡¡at¡¡the¡¡outset¡¡of¡¡the
discussion¡¡which¡¡has¡¡the¡¡Notion¡¡for¡¡its¡¡content£»¡¡that¡¡we¡¡must¡¡look¡¡back¡¡once¡¡more¡¡at¡¡its¡¡genesis¡£
Essence¡¡is¡¡the¡¡outcome¡¡of¡¡being£»¡¡and¡¡the¡¡Notion£»¡¡the¡¡outcome¡¡of¡¡essence£»¡¡therefore¡¡also¡¡of
being¡£¡¡But¡¡this¡¡becoming¡¡has¡¡the¡¡significance¡¡of¡¡a¡¡self¡­repulsion£»¡¡so¡¡that¡¡it¡¡is¡¡rather¡¡the¡¡outcome
which¡¡is¡¡the¡¡unconditioned¡¡and¡¡original¡£¡¡Being£»¡¡in¡¡its¡¡transition¡¡into¡¡essence£»¡¡has¡¡become¡¡an
illusory¡¡being¡¡or¡¡a¡¡positedness£»¡¡and¡¡becoming¡¡or¡¡transition¡¡into¡¡an¡¡other¡¡has¡¡become¡¡a¡¡positing£»
and¡¡conversely£»¡¡the¡¡positing¡¡or¡¡reflection¡¡of¡¡essence¡¡has¡¡sublated¡¡itself¡¡and¡¡has¡¡restored¡¡itself¡¡as¡¡a
being¡¡that¡¡is¡¡not¡¡posited£»¡¡that¡¡is¡¡original¡£¡¡The¡¡Notion¡¡is¡¡the¡¡interfusion¡¡of¡¡these¡¡moments£»¡¡namely£»
qualitative¡¡and¡¡original¡¡being¡¡is¡¡such¡¡only¡¡as¡¡a¡¡positing£»¡¡only¡¡as¡¡a¡¡return¡­into¡­self£»¡¡and¡¡this¡¡pure
reflection¡­into¡­self¡¡is¡¡a¡¡sheer¡¡becoming¡­other¡¡or¡¡determinateness¡¡which£»¡¡consequently£»¡¡is¡¡no¡¡less
an¡¡infinite£»¡¡self¡­relating¡¡determinateness¡£

Thus¡¡the¡¡Notion¡¡is£»¡¡in¡¡the¡¡first¡¡instance£»¡¡the¡¡absolute¡¡self¡­identity¡¡that¡¡is¡¡such¡¡only¡¡as¡¡the¡¡negation
of¡¡negation¡¡or¡¡as¡¡the¡¡infinite¡¡unity¡¡of¡¡the¡¡negativity¡¡with¡¡itself¡£¡¡This¡¡pure¡¡relation¡¡of¡¡the¡¡Notion¡¡to
itself£»¡¡which¡¡is¡¡this¡¡relation¡¡by¡¡positing¡¡itself¡¡through¡¡the¡¡negativity£»¡¡is¡¡the¡¡universality¡¡of¡¡the
Notion¡£

As¡¡universality¡¡is¡¡the¡¡utterly¡¡simple¡¡determination£»¡¡it¡¡does¡¡not¡¡seem¡¡capable¡¡of¡¡any¡¡explanation£»
for¡¡an¡¡explanation¡¡must¡¡concern¡¡itself¡¡with¡¡definitions¡¡and¡¡distinctions¡¡and¡¡must¡¡apply¡¡predicates¡¡to
its¡¡object£»¡¡and¡¡to¡¡do¡¡this¡¡to¡¡what¡¡is¡¡simple£»¡¡would¡¡alter¡¡rather¡¡than¡¡explain¡¡it¡£¡¡But¡¡the¡¡simplicity
which¡¡constitutes¡¡the¡¡very¡¡nature¡¡of¡¡the¡¡universal¡¡is¡¡such¡¡that£»¡¡through¡¡absolute¡¡negativity£»¡¡it
contains¡¡within¡¡itself¡¡difference¡¡and¡¡determinateness¡¡in¡¡the¡¡highest¡¡degree¡£¡¡Being¡¡is¡¡simple¡¡as
immediate¡¡being£»¡¡for¡¡that¡¡reason¡¡it¡¡is¡¡only¡¡something¡¡meant¡¡or¡¡intended¡¡and¡¡we¡¡cannot¡¡say¡¡of¡¡it
what¡¡it¡¡is£»¡¡therefore£»¡¡it¡¡is¡¡one¡¡with¡¡its¡¡other£»¡¡with¡¡non¡­being¡£¡¡Its¡¡Notion¡¡is¡¡just¡¡this£»¡¡to¡¡be¡¡a
simplicity¡¡that¡¡immediately¡¡vanishes¡¡in¡¡its¡¡opposite£»¡¡it¡¡is¡¡becoming¡£¡¡The¡¡universal£»¡¡on¡¡the¡¡contrary£»
is¡¡that¡¡simplicity¡¡which£»¡¡because¡¡it¡¡is¡¡the¡¡Notion£»¡¡no¡¡less¡¡possesses¡¡within¡¡itself¡¡the¡¡richest
content¡£

First£»¡¡therefore£»¡¡it¡¡is¡¡the¡¡simple¡¡relation¡¡to¡¡itself£»¡¡it¡¡is¡¡only¡¡within¡¡itself¡£¡¡Secondly£»¡¡however£»¡¡this
identity¡¡is¡¡within¡¡itself¡¡absolute¡¡mediation£»¡¡but¡¡it¡¡is¡¡not¡¡something¡¡mediated¡£¡¡The¡¡universal¡¡that¡¡is
mediated£»¡¡namely£»¡¡the¡¡abstract¡¡universal¡¡that¡¡is¡¡opposed¡¡to¡¡the¡¡particular¡¡and¡¡the¡¡individual£»¡¡this
will¡¡be¡¡discussed¡¡later¡¡when¡¡we¡¡are¡¡dealing¡¡with¡¡the¡¡specific¡¡notion¡£¡¡Yet¡¡even¡¡the¡¡abstract
universal¡¡involves¡¡this£»¡¡that¡¡in¡¡order¡¡to¡¡obtain¡¡it¡¡we¡¡are¡¡required¡¡to¡¡leave¡¡out¡¡other¡¡determinations
of¡¡the¡¡concrete¡£¡¡These¡¡determinations£»¡¡simply¡¡as¡¡such£»¡¡are¡¡negations£»¡¡equally£»¡¡too£»¡¡the¡¡omitting
of¡¡them¡¡is¡¡a¡¡negating¡£¡¡So¡¡that¡¡even¡¡with¡¡the¡¡abstraction£»¡¡we¡¡have¡¡the¡¡negation¡¡of¡¡the¡¡negation¡£¡¡But
this¡¡double¡¡negation¡¡is¡¡conceived¡¡of¡¡as¡¡though¡¡it¡¡were¡¡external¡¡to¡¡the¡¡abstraction£»¡¡as¡¡though¡¡not
only¡¡were¡¡the¡¡other¡¡omitted¡¡properties¡¡of¡¡the¡¡concrete¡¡distinct¡¡from¡¡the¡¡one¡¡retained£»¡¡which¡¡is¡¡the
content¡¡of¡¡the¡¡abstract¡¡universal£»¡¡but¡¡also¡¡as¡¡though¡¡this¡¡operation¡¡of¡¡omitting¡¡the¡¡other¡¡properties
and¡¡retaining¡¡the¡¡one¡¡were¡¡a¡¡process¡¡outside¡¡the¡¡properties¡¡themselves¡£¡¡To¡¡such¡¡an¡¡externality¡¡in
face¡¡of¡¡that¡¡movement£»¡¡the¡¡universal¡¡has¡¡not¡¡yet¡¡determined¡¡itself£»¡¡it¡¡is¡¡still¡¡within¡¡itself¡¡that¡¡absolute
mediation¡¡which¡¡is£»¡¡precisely£»¡¡the¡¡negation¡¡of¡¡the¡¡negation¡¡or¡¡absolute¡¡negativity¡£

By¡¡virtue¡¡of¡¡this¡¡original¡¡unity¡¡it¡¡follows£»¡¡in¡¡the¡¡first¡¡place£»¡¡that¡¡the¡¡first¡¡negative£»¡¡or¡¡the
determination£»¡¡is¡¡not¡¡a¡¡limitation¡¡for¡¡the¡¡universal¡¡which£»¡¡on¡¡the¡¡contrary£»¡¡maintains¡¡itself¡¡therein
and¡¡is¡¡positively¡¡identical¡¡with¡¡itself¡£¡¡The¡¡categories¡¡of¡¡being¡¡were£»¡¡as¡¡Notions£»¡¡essentially¡¡these
identities¡¡of¡¡the¡¡determinations¡¡with¡¡themselves¡¡in¡¡their¡¡limitation¡¡or¡¡otherness£»¡¡but¡¡this¡¡identity¡¡was
only¡¡in¡¡itself¡¡the¡¡Notion£»¡¡it¡¡was¡¡not¡¡yet¡¡manifested¡£¡¡Consequently£»¡¡the¡¡qualitative¡¡determination¡¡as
such¡¡was¡¡lost¡¡in¡¡its¡¡other¡¡and¡¡had¡¡for¡¡its¡¡truth¡¡a¡¡determination¡¡distinct¡¡from¡¡itself¡£¡¡The¡¡universal£»¡¡on
the¡¡contrary£»¡¡even¡¡when¡¡it¡¡posits¡¡itself¡¡in¡¡a¡¡determination£»¡¡remains¡¡therein¡¡what¡¡it¡¡is¡£¡¡It¡¡is¡¡the¡¡soul
£§Seele£§¡¡of¡¡the¡¡concrete¡¡which¡¡it¡¡indwells£»¡¡unimpeded¡¡and¡¡equal¡¡to¡¡itself¡¡in¡¡the¡¡manifoldness¡¡and
diversity¡¡of¡¡the¡¡concrete¡£¡¡It¡¡is¡¡not¡¡dragged¡¡into¡¡the¡¡process¡¡of¡¡becoming£»¡¡but¡¡continues¡¡itself
through¡¡that¡¡process¡¡undisturbed¡¡and¡¡possesses¡¡the¡¡power¡¡of¡¡unalterable£»¡¡undying
self¡­preservation¡£

But¡¡even¡¡so£»¡¡it¡¡does¡¡not¡¡merely¡¡show£»¡¡or¡¡have¡¡an¡¡illusory¡¡being£»¡¡in¡¡its¡¡other£»¡¡like¡¡the¡¡determination
of¡¡reflection£»¡¡this£»¡¡as¡¡a¡¡correlate£»¡¡is¡¡not¡¡merely¡¡self¡­related¡¡but¡¡is¡¡a¡¡positive¡¡relating¡¡of¡¡itself¡¡to¡¡its
other¡¡in¡¡which¡¡it¡¡manifests¡¡itself£»¡¡but£»¡¡in¡¡the¡¡first¡¡instance£»¡¡it¡¡only¡¡shows¡¡in¡¡it£»¡¡and¡¡this¡¡illusory¡¡being
of¡¡each¡¡in¡¡the¡¡other£»¡¡or¡¡their¡¡reciprocal¡¡determining£»¡¡along¡¡with¡¡their¡¡self¡­dependence£»¡¡has¡¡the¡¡form
of¡¡an¡¡external¡¡act¡£¡¡The¡¡universal£»¡¡on¡¡the¡¡contrary£»¡¡is¡¡posited¡¡as¡¡the¡¡essential¡¡being¡¡of¡¡its
determination£»¡¡as¡¡the¡¡latter's¡¡own¡¡positive¡¡nature¡£¡¡For¡¡the¡¡determination¡¡that¡¡constitutes¡¡its
negative¡¡is£»¡¡in¡¡the¡¡Notion£»¡¡simply¡¡and¡¡solely¡¡a¡¡positedness£»¡¡in¡¡other¡¡words£»¡¡it¡¡is£»¡¡at¡¡the¡¡same¡¡time£»
essentially¡¡only¡¡the¡¡negative¡¡of¡¡the¡¡negative£»¡¡and¡¡is¡¡only¡¡as¡¡this¡¡identity¡¡of¡¡the¡¡negative¡¡with¡¡itself£»
which¡¡is¡¡the¡¡universal¡£¡¡Thus¡¡the¡¡universal¡¡is¡¡also¡¡the¡¡substa
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü