necessary¡¡premisses¡¡is¡¡as¡¡follows¡£¡¡Where¡¡demonstration¡¡is¡¡possible£»
one¡¡who¡¡can¡¡give¡¡no¡¡account¡¡which¡¡includes¡¡the¡¡cause¡¡has¡¡no¡¡scientific
knowledge¡£¡¡If£»¡¡then£»¡¡we¡¡suppose¡¡a¡¡syllogism¡¡in¡¡which£»¡¡though¡¡A
necessarily¡¡inheres¡¡in¡¡C£»¡¡yet¡¡B£»¡¡the¡¡middle¡¡term¡¡of¡¡the¡¡demonstration£»
is¡¡not¡¡necessarily¡¡connected¡¡with¡¡A¡¡and¡¡C£»¡¡then¡¡the¡¡man¡¡who¡¡argues
thus¡¡has¡¡no¡¡reasoned¡¡knowledge¡¡of¡¡the¡¡conclusion£»¡¡since¡¡this
conclusion¡¡does¡¡not¡¡owe¡¡its¡¡necessity¡¡to¡¡the¡¡middle¡¡term£»¡¡for¡¡though
the¡¡conclusion¡¡is¡¡necessary£»¡¡the¡¡mediating¡¡link¡¡is¡¡a¡¡contingent
fact¡£¡¡Or¡¡again£»¡¡if¡¡a¡¡man¡¡is¡¡without¡¡knowledge¡¡now£»¡¡though¡¡he¡¡still
retains¡¡the¡¡steps¡¡of¡¡the¡¡argument£»¡¡though¡¡there¡¡is¡¡no¡¡change¡¡in
himself¡¡or¡¡in¡¡the¡¡fact¡¡and¡¡no¡¡lapse¡¡of¡¡memory¡¡on¡¡his¡¡part£»¡¡then
neither¡¡had¡¡he¡¡knowledge¡¡previously¡£¡¡But¡¡the¡¡mediating¡¡link£»¡¡not¡¡being
necessary£»¡¡may¡¡have¡¡perished¡¡in¡¡the¡¡interval£»¡¡and¡¡if¡¡so£»¡¡though
there¡¡be¡¡no¡¡change¡¡in¡¡him¡¡nor¡¡in¡¡the¡¡fact£»¡¡and¡¡though¡¡he¡¡will¡¡still
retain¡¡the¡¡steps¡¡of¡¡the¡¡argument£»¡¡yet¡¡he¡¡has¡¡not¡¡knowledge£»¡¡and
therefore¡¡had¡¡not¡¡knowledge¡¡before¡£¡¡Even¡¡if¡¡the¡¡link¡¡has¡¡not
actually¡¡perished¡¡but¡¡is¡¡liable¡¡to¡¡perish£»¡¡this¡¡situation¡¡is
possible¡¡and¡¡might¡¡occur¡£¡¡But¡¡such¡¡a¡¡condition¡¡cannot¡¡be¡¡knowledge¡£
¡¡¡¡When¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡the¡¡middle¡¡through¡¡which¡¡it¡¡was
proved¡¡may¡¡yet¡¡quite¡¡easily¡¡be¡¡non¡necessary¡£¡¡You¡¡can¡¡in¡¡fact¡¡infer
the¡¡necessary¡¡even¡¡from¡¡a¡¡non¡necessary¡¡premiss£»¡¡just¡¡as¡¡you¡¡can¡¡infer
the¡¡true¡¡from¡¡the¡¡not¡¡true¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡when¡¡the¡¡middle¡¡is
necessary¡¡the¡¡conclusion¡¡must¡¡be¡¡necessary£»¡¡just¡¡as¡¡true¡¡premisses
always¡¡give¡¡a¡¡true¡¡conclusion¡£¡¡Thus£»¡¡if¡¡A¡¡is¡¡necessarily¡¡predicated¡¡of
B¡¡and¡¡B¡¡of¡¡C£»¡¡then¡¡A¡¡is¡¡necessarily¡¡predicated¡¡of¡¡C¡£¡¡But¡¡when¡¡the
conclusion¡¡is¡¡nonnecessary¡¡the¡¡middle¡¡cannot¡¡be¡¡necessary¡¡either¡£
Thus£º¡¡let¡¡A¡¡be¡¡predicated¡¡non¡necessarily¡¡of¡¡C¡¡but¡¡necessarily¡¡of¡¡B£»
and¡¡let¡¡B¡¡be¡¡a¡¡necessary¡¡predicate¡¡of¡¡C£»¡¡then¡¡A¡¡too¡¡will¡¡be¡¡a
necessary¡¡predicate¡¡of¡¡C£»¡¡which¡¡by¡¡hypothesis¡¡it¡¡is¡¡not¡£
¡¡¡¡To¡¡sum¡¡up£»¡¡then£º¡¡demonstrative¡¡knowledge¡¡must¡¡be¡¡knowledge¡¡of¡¡a
necessary¡¡nexus£»¡¡and¡¡therefore¡¡must¡¡clearly¡¡be¡¡obtained¡¡through¡¡a
necessary¡¡middle¡¡term£»¡¡otherwise¡¡its¡¡possessor¡¡will¡¡know¡¡neither¡¡the
cause¡¡nor¡¡the¡¡fact¡¡that¡¡his¡¡conclusion¡¡is¡¡a¡¡necessary¡¡connexion¡£
Either¡¡he¡¡will¡¡mistake¡¡the¡¡non¡necessary¡¡for¡¡the¡¡necessary¡¡and¡¡believe
the¡¡necessity¡¡of¡¡the¡¡conclusion¡¡without¡¡knowing¡¡it£»¡¡or¡¡else¡¡he¡¡will
not¡¡even¡¡believe¡¡it¡in¡¡which¡¡case¡¡he¡¡will¡¡be¡¡equally¡¡ignorant£»¡¡whether
he¡¡actually¡¡infers¡¡the¡¡mere¡¡fact¡¡through¡¡middle¡¡terms¡¡or¡¡the
reasoned¡¡fact¡¡and¡¡from¡¡immediate¡¡premisses¡£
¡¡¡¡Of¡¡accidents¡¡that¡¡are¡¡not¡¡essential¡¡according¡¡to¡¡our¡¡definition¡¡of
essential¡¡there¡¡is¡¡no¡¡demonstrative¡¡knowledge£»¡¡for¡¡since¡¡an
accident£»¡¡in¡¡the¡¡sense¡¡in¡¡which¡¡I¡¡here¡¡speak¡¡of¡¡it£»¡¡may¡¡also¡¡not
inhere£»¡¡it¡¡is¡¡impossible¡¡to¡¡prove¡¡its¡¡inherence¡¡as¡¡a¡¡necessary
conclusion¡£¡¡A¡¡difficulty£»¡¡however£»¡¡might¡¡be¡¡raised¡¡as¡¡to¡¡why¡¡in
dialectic£»¡¡if¡¡the¡¡conclusion¡¡is¡¡not¡¡a¡¡necessary¡¡connexion£»¡¡such¡¡and
such¡¡determinate¡¡premisses¡¡should¡¡be¡¡proposed¡¡in¡¡order¡¡to¡¡deal¡¡with
such¡¡and¡¡such¡¡determinate¡¡problems¡£¡¡Would¡¡not¡¡the¡¡result¡¡be¡¡the¡¡same
if¡¡one¡¡asked¡¡any¡¡questions¡¡whatever¡¡and¡¡then¡¡merely¡¡stated¡¡one's
conclusion£¿¡¡The¡¡solution¡¡is¡¡that¡¡determinate¡¡questions¡¡have¡¡to¡¡be¡¡put£»
not¡¡because¡¡the¡¡replies¡¡to¡¡them¡¡affirm¡¡facts¡¡which¡¡necessitate¡¡facts
affirmed¡¡by¡¡the¡¡conclusion£»¡¡but¡¡because¡¡these¡¡answers¡¡are¡¡propositions
which¡¡if¡¡the¡¡answerer¡¡affirm£»¡¡he¡¡must¡¡affirm¡¡the¡¡conclusion¡¡and¡¡affirm
it¡¡with¡¡truth¡¡if¡¡they¡¡are¡¡true¡£
¡¡¡¡Since¡¡it¡¡is¡¡just¡¡those¡¡attributes¡¡within¡¡every¡¡genus¡¡which¡¡are
essential¡¡and¡¡possessed¡¡by¡¡their¡¡respective¡¡subjects¡¡as¡¡such¡¡that
are¡¡necessary¡¡it¡¡is¡¡clear¡¡that¡¡both¡¡the¡¡conclusions¡¡and¡¡the
premisses¡¡of¡¡demonstrations¡¡which¡¡produce¡¡scientific¡¡knowledge¡¡are
essential¡£¡¡For¡¡accidents¡¡are¡¡not¡¡necessary£º¡¡and£»¡¡further£»¡¡since
accidents¡¡are¡¡not¡¡necessary¡¡one¡¡does¡¡not¡¡necessarily¡¡have¡¡reasoned
knowledge¡¡of¡¡a¡¡conclusion¡¡drawn¡¡from¡¡them¡¡£¨this¡¡is¡¡so¡¡even¡¡if¡¡the
accidental¡¡premisses¡¡are¡¡invariable¡¡but¡¡not¡¡essential£»¡¡as¡¡in¡¡proofs
through¡¡signs£»¡¡for¡¡though¡¡the¡¡conclusion¡¡be¡¡actually¡¡essential£»¡¡one
will¡¡not¡¡know¡¡it¡¡as¡¡essential¡¡nor¡¡know¡¡its¡¡reason£©£»¡¡but¡¡to¡¡have
reasoned¡¡knowledge¡¡of¡¡a¡¡conclusion¡¡is¡¡to¡¡know¡¡it¡¡through¡¡its¡¡cause¡£¡¡We
may¡¡conclude¡¡that¡¡the¡¡middle¡¡must¡¡be¡¡consequentially¡¡connected¡¡with
the¡¡minor£»¡¡and¡¡the¡¡major¡¡with¡¡the¡¡middle¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7
¡¡¡¡It¡¡follows¡¡that¡¡we¡¡cannot¡¡in¡¡demonstrating¡¡pass¡¡from¡¡one¡¡genus¡¡to
another¡£¡¡We¡¡cannot£»¡¡for¡¡instance£»¡¡prove¡¡geometrical¡¡truths¡¡by
arithmetic¡£¡¡For¡¡there¡¡are¡¡three¡¡elements¡¡in¡¡demonstration£º¡¡£¨1£©¡¡what¡¡is
proved£»¡¡the¡¡conclusion¡an¡¡attribute¡¡inhering¡¡essentially¡¡in¡¡a¡¡genus£»
£¨2£©¡¡the¡¡axioms£»¡¡i¡£e¡£¡¡axioms¡¡which¡¡are¡¡premisses¡¡of¡¡demonstration£»
£¨3£©¡¡the¡¡subject¡genus¡¡whose¡¡attributes£»¡¡i¡£e¡£¡¡essential¡¡properties£»¡¡are
revealed¡¡by¡¡the¡¡demonstration¡£¡¡The¡¡axioms¡¡which¡¡are¡¡premisses¡¡of
demonstration¡¡may¡¡be¡¡identical¡¡in¡¡two¡¡or¡¡more¡¡sciences£º¡¡but¡¡in¡¡the
case¡¡of¡¡two¡¡different¡¡genera¡¡such¡¡as¡¡arithmetic¡¡and¡¡geometry¡¡you
cannot¡¡apply¡¡arithmetical¡¡demonstration¡¡to¡¡the¡¡properties¡¡of
magnitudes¡¡unless¡¡the¡¡magnitudes¡¡in¡¡question¡¡are¡¡numbers¡£¡¡How¡¡in
certain¡¡cases¡¡transference¡¡is¡¡possible¡¡I¡¡will¡¡explain¡¡later¡£
¡¡¡¡Arithmetical¡¡demonstration¡¡and¡¡the¡¡other¡¡sciences¡¡likewise
possess£»¡¡each¡¡of¡¡them£»¡¡their¡¡own¡¡genera£»¡¡so¡¡that¡¡if¡¡the
demonstration¡¡is¡¡to¡¡pass¡¡from¡¡one¡¡sphere¡¡to¡¡another£»¡¡the¡¡genus¡¡must¡¡be
either¡¡absolutely¡¡or¡¡to¡¡some¡¡extent¡¡the¡¡same¡£¡¡If¡¡this¡¡is¡¡not¡¡so£»
transference¡¡is¡¡clearly¡¡impossible£»¡¡because¡¡the¡¡extreme¡¡and¡¡the¡¡middle
terms¡¡must¡¡be¡¡drawn¡¡from¡¡the¡¡same¡¡genus£º¡¡otherwise£»¡¡as¡¡predicated£»
they¡¡will¡¡not¡¡be¡¡essential¡¡and¡¡will¡¡thus¡¡be¡¡accidents¡£¡¡That¡¡is¡¡why
it¡¡cannot¡¡be¡¡proved¡¡by¡¡geometry¡¡that¡¡opposites¡¡fall¡¡under¡¡one¡¡science£»
nor¡¡even¡¡that¡¡the¡¡product¡¡of¡¡two¡¡cubes¡¡is¡¡a¡¡cube¡£¡¡Nor¡¡can¡¡the
theorem¡¡of¡¡any¡¡one¡¡science¡¡be¡¡demonstrated¡¡by¡¡means¡¡of¡¡another
science£»¡¡unless¡¡these¡¡theorems¡¡are¡¡related¡¡as¡¡subordinate¡¡to
superior¡¡£¨e¡£g¡£¡¡as¡¡optical¡¡theorems¡¡to¡¡geometry¡¡or¡¡harmonic¡¡theorems¡¡to
arithmetic£©¡£¡¡Geometry¡¡again¡¡cannot¡¡prove¡¡of¡¡lines¡¡any¡¡property¡¡which
they¡¡do¡¡not¡¡possess¡¡qua¡¡lines£»¡¡i¡£e¡£¡¡in¡¡virtue¡¡of¡¡the¡¡fundamental
truths¡¡of¡¡their¡¡peculiar¡¡genus£º¡¡it¡¡cannot¡¡show£»¡¡for¡¡example£»¡¡that
the¡¡straight¡¡line¡¡is¡¡the¡¡most¡¡beautiful¡¡of¡¡lines¡¡or¡¡the¡¡contrary¡¡of
the¡¡circle£»¡¡for¡¡these¡¡qualities¡¡do¡¡not¡¡belong¡¡to¡¡lines¡¡in¡¡virtue¡¡of
their¡¡peculiar¡¡genus£»¡¡but¡¡through¡¡some¡¡property¡¡which¡¡it¡¡shares¡¡with
other¡¡genera¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8
¡¡¡¡It¡¡is¡¡also¡¡clear¡¡that¡¡if¡¡the¡¡premisses¡¡from¡¡which¡¡the¡¡syllogism
proceeds¡¡are¡¡commensurately¡¡universal£»¡¡the¡¡conclusion¡¡of¡¡such¡¡i¡£e¡£
in¡¡the¡¡unqualified¡¡sense¡must¡¡also¡¡be¡¡eternal¡£¡¡Therefore¡¡no
attribute¡¡can¡¡be¡¡demonstrated¡¡nor¡¡known¡¡by¡¡strictly¡¡scientific
knowledge¡¡to¡¡inhere¡¡in¡¡perishable¡¡things¡£¡¡The¡¡proof¡¡can¡¡only¡¡be
accidental£»¡¡because¡¡the¡¡attribute's¡¡connexion¡¡with¡¡its¡¡perishable
subject¡¡is¡¡not¡¡commensurately¡¡universal¡¡but¡¡temporary¡¡and¡¡special¡£
If¡¡such¡¡a¡¡demonstration¡¡is¡¡made£»¡¡one¡¡premiss¡¡must¡¡be¡¡perishable¡¡and
not¡¡commensurately¡¡universal¡¡£¨perishable¡¡because¡¡only¡¡if¡¡it¡¡is
perishable¡¡will¡¡the¡¡conclusion¡¡be¡¡perishable£»¡¡not¡¡commensurately
universal£»¡¡because¡¡the¡¡predicate¡¡will¡¡be¡¡predicable¡¡of¡¡some
instances¡¡of¡¡the¡¡subject¡¡and¡¡not¡¡of¡¡others£©£»¡¡so¡¡that¡¡the¡¡conclusion
can¡¡only¡¡be¡¡that¡¡a¡¡fact¡¡is¡¡true¡¡at¡¡the¡¡moment¡not¡¡commensurately¡¡and
universally¡£¡¡The¡¡same¡¡is¡¡true¡¡of¡¡definitions£»¡¡since¡¡a¡¡definition¡¡is
either¡¡a¡¡primary¡¡premiss¡¡or¡¡a¡¡conclusion¡¡of¡¡a¡¡demonstration£»¡¡or¡¡else
only¡¡differs¡¡from¡¡a¡¡demonstration¡¡in¡¡the¡¡order¡¡of¡¡its¡¡terms¡£
Demonstration¡¡and¡¡science¡¡of¡¡merely¡¡frequent¡¡occurrences¡e¡£g¡£¡¡of
eclipse¡¡as¡¡happening¡¡to¡¡the¡¡moon¡are£»¡¡as¡¡such£»¡¡clearly¡¡eternal£º
whereas¡¡so¡¡far¡¡as¡¡they¡¡are¡¡not¡¡eternal¡¡they¡¡are¡¡not¡¡fully
commensurate¡£¡¡Other¡¡subjects¡¡too¡¡have¡¡properties¡¡attaching¡¡to¡¡them
in¡¡the¡¡same¡¡way¡¡as¡¡eclipse¡¡attaches¡¡to¡¡the¡¡moon¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9
¡¡¡¡It¡¡is¡¡clear¡¡that¡¡if¡¡the¡¡conclusion¡¡is¡¡to¡¡show¡¡an¡¡attribute
inhering¡¡as¡¡such£»¡¡nothing¡¡can¡¡be¡¡demonstrated¡¡except¡¡from¡¡its
'appropriate'¡¡basic¡¡truths¡£¡¡Consequently¡¡a¡¡proof¡¡even¡¡from¡¡true£»
indemonstrable£»¡¡and¡¡immediate¡¡premisses¡¡does¡¡not¡¡constitute¡¡knowledge¡£
Such¡¡proofs¡¡are¡¡like¡¡Bryson's¡¡method¡¡of¡¡squaring¡¡the¡¡circle£»¡¡for
they¡¡operate¡¡by¡¡taking¡¡as¡¡their¡¡middle¡¡a¡¡common¡¡character¡a¡¡character£»
therefore£»¡¡which¡¡the¡¡subject¡¡may¡¡share¡¡with¡¡another¡and¡¡consequently
they¡¡apply¡¡equally¡¡to¡¡subjects¡¡different¡¡in¡¡kind¡£¡¡They¡¡therefore
afford¡¡knowledge¡¡of¡¡an¡¡attribute¡¡only¡¡as¡¡inhering¡¡accidentally£»¡¡not¡¡as
belonging¡¡to¡¡its¡¡subject¡¡as¡¡such£º¡¡otherwise¡¡they¡¡would¡¡not¡¡have¡¡been
applicable¡¡to¡¡another¡¡genus¡£
¡¡¡¡Our¡¡knowledge¡¡of¡¡any¡¡attribute's¡¡connexion¡¡with¡¡a¡¡subject¡¡is
accidental¡¡unless¡¡we¡¡know¡¡that¡¡connexion¡¡through¡¡the¡¡middle¡¡term¡¡in
virtue¡¡of¡¡which¡¡it¡¡inheres£»¡¡and¡¡as¡¡an¡¡inference¡¡from¡¡basic¡¡premisses
essential¡¡and¡¡'appropriate'¡¡to¡¡the¡¡subject¡unless¡¡we¡¡know£»¡¡e¡£g¡£¡¡the
property¡¡of¡¡possessing¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles¡¡as¡¡belonging
to¡¡that¡¡subject¡¡in¡¡which¡¡it¡¡inheres¡¡essentially£»¡¡and¡¡as¡¡inferred
from¡¡basic¡¡premisses¡¡essential¡¡and¡¡'appropriate'¡¡to¡¡that¡¡subject£º¡¡so
that¡¡if¡¡that¡¡middle¡¡term¡¡also¡¡belongs¡¡essentially¡¡to¡¡the¡¡minor£»¡¡the
middle¡¡must¡¡belong¡¡to¡¡the¡¡same¡¡kind¡¡as¡¡the¡¡major¡¡and¡¡minor¡¡terms¡£
The¡¡only¡¡exceptions¡¡to¡¡this¡¡rule¡¡are¡¡such¡¡cases¡¡as¡¡theorems¡¡in
harmonics¡¡which¡¡are¡¡demonstrable¡¡by¡¡arithmetic¡£¡¡Such¡¡theorems¡¡are
proved¡¡by¡¡the¡¡same¡¡middle¡¡terms¡¡as¡¡arithmetical¡¡properties£»¡¡but¡¡with¡¡a
qualification¡the¡¡fact¡¡falls¡¡under¡¡a¡¡separate¡¡science¡¡£¨for¡¡the¡¡subject
genus¡¡is¡¡separate
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü