¡¶posterior analytics¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

posterior analytics- µÚ5²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡



qualification¡­the¡¡fact¡¡falls¡¡under¡¡a¡¡separate¡¡science¡¡£¨for¡¡the¡¡subject



genus¡¡is¡¡separate£©£»¡¡but¡¡the¡¡reasoned¡¡fact¡¡concerns¡¡the¡¡superior



science£»¡¡to¡¡which¡¡the¡¡attributes¡¡essentially¡¡belong¡£¡¡Thus£»¡¡even



these¡¡apparent¡¡exceptions¡¡show¡¡that¡¡no¡¡attribute¡¡is¡¡strictly



demonstrable¡¡except¡¡from¡¡its¡¡'appropriate'¡¡basic¡¡truths£»¡¡which£»



however£»¡¡in¡¡the¡¡case¡¡of¡¡these¡¡sciences¡¡have¡¡the¡¡requisite¡¡identity



of¡¡character¡£



¡¡¡¡It¡¡is¡¡no¡¡less¡¡evident¡¡that¡¡the¡¡peculiar¡¡basic¡¡truths¡¡of¡¡each



inhering¡¡attribute¡¡are¡¡indemonstrable£»¡¡for¡¡basic¡¡truths¡¡from¡¡which



they¡¡might¡¡be¡¡deduced¡¡would¡¡be¡¡basic¡¡truths¡¡of¡¡all¡¡that¡¡is£»¡¡and¡¡the



science¡¡to¡¡which¡¡they¡¡belonged¡¡would¡¡possess¡¡universal¡¡sovereignty¡£



This¡¡is¡¡so¡¡because¡¡he¡¡knows¡¡better¡¡whose¡¡knowledge¡¡is¡¡deduced¡¡from



higher¡¡causes£»¡¡for¡¡his¡¡knowledge¡¡is¡¡from¡¡prior¡¡premisses¡¡when¡¡it



derives¡¡from¡¡causes¡¡themselves¡¡uncaused£º¡¡hence£»¡¡if¡¡he¡¡knows¡¡better



than¡¡others¡¡or¡¡best¡¡of¡¡all£»¡¡his¡¡knowledge¡¡would¡¡be¡¡science¡¡in¡¡a¡¡higher



or¡¡the¡¡highest¡¡degree¡£¡¡But£»¡¡as¡¡things¡¡are£»¡¡demonstration¡¡is¡¡not



transferable¡¡to¡¡another¡¡genus£»¡¡with¡¡such¡¡exceptions¡¡as¡¡we¡¡have



mentioned¡¡of¡¡the¡¡application¡¡of¡¡geometrical¡¡demonstrations¡¡to¡¡theorems



in¡¡mechanics¡¡or¡¡optics£»¡¡or¡¡of¡¡arithmetical¡¡demonstrations¡¡to¡¡those



of¡¡harmonics¡£



¡¡¡¡It¡¡is¡¡hard¡¡to¡¡be¡¡sure¡¡whether¡¡one¡¡knows¡¡or¡¡not£»¡¡for¡¡it¡¡is¡¡hard¡¡to¡¡be



sure¡¡whether¡¡one's¡¡knowledge¡¡is¡¡based¡¡on¡¡the¡¡basic¡¡truths



appropriate¡¡to¡¡each¡¡attribute¡­the¡¡differentia¡¡of¡¡true¡¡knowledge¡£¡¡We



think¡¡we¡¡have¡¡scientific¡¡knowledge¡¡if¡¡we¡¡have¡¡reasoned¡¡from¡¡true¡¡and



primary¡¡premisses¡£¡¡But¡¡that¡¡is¡¡not¡¡so£º¡¡the¡¡conclusion¡¡must¡¡be



homogeneous¡¡with¡¡the¡¡basic¡¡facts¡¡of¡¡the¡¡science¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10







¡¡¡¡I¡¡call¡¡the¡¡basic¡¡truths¡¡of¡¡every¡¡genus¡¡those¡¡clements¡¡in¡¡it¡¡the



existence¡¡of¡¡which¡¡cannot¡¡be¡¡proved¡£¡¡As¡¡regards¡¡both¡¡these¡¡primary



truths¡¡and¡¡the¡¡attributes¡¡dependent¡¡on¡¡them¡¡the¡¡meaning¡¡of¡¡the¡¡name¡¡is



assumed¡£¡¡The¡¡fact¡¡of¡¡their¡¡existence¡¡as¡¡regards¡¡the¡¡primary¡¡truths



must¡¡be¡¡assumed£»¡¡but¡¡it¡¡has¡¡to¡¡be¡¡proved¡¡of¡¡the¡¡remainder£»¡¡the



attributes¡£¡¡Thus¡¡we¡¡assume¡¡the¡¡meaning¡¡alike¡¡of¡¡unity£»¡¡straight£»¡¡and



triangular£»¡¡but¡¡while¡¡as¡¡regards¡¡unity¡¡and¡¡magnitude¡¡we¡¡assume¡¡also



the¡¡fact¡¡of¡¡their¡¡existence£»¡¡in¡¡the¡¡case¡¡of¡¡the¡¡remainder¡¡proof¡¡is



required¡£



¡¡¡¡Of¡¡the¡¡basic¡¡truths¡¡used¡¡in¡¡the¡¡demonstrative¡¡sciences¡¡some¡¡are



peculiar¡¡to¡¡each¡¡science£»¡¡and¡¡some¡¡are¡¡common£»¡¡but¡¡common¡¡only¡¡in



the¡¡sense¡¡of¡¡analogous£»¡¡being¡¡of¡¡use¡¡only¡¡in¡¡so¡¡far¡¡as¡¡they¡¡fall



within¡¡the¡¡genus¡¡constituting¡¡the¡¡province¡¡of¡¡the¡¡science¡¡in¡¡question¡£



¡¡¡¡Peculiar¡¡truths¡¡are£»¡¡e¡£g¡£¡¡the¡¡definitions¡¡of¡¡line¡¡and¡¡straight£»



common¡¡truths¡¡are¡¡such¡¡as¡¡'take¡¡equals¡¡from¡¡equals¡¡and¡¡equals¡¡remain'¡£



Only¡¡so¡¡much¡¡of¡¡these¡¡common¡¡truths¡¡is¡¡required¡¡as¡¡falls¡¡within¡¡the



genus¡¡in¡¡question£º¡¡for¡¡a¡¡truth¡¡of¡¡this¡¡kind¡¡will¡¡have¡¡the¡¡same¡¡force



even¡¡if¡¡not¡¡used¡¡generally¡¡but¡¡applied¡¡by¡¡the¡¡geometer¡¡only¡¡to



magnitudes£»¡¡or¡¡by¡¡the¡¡arithmetician¡¡only¡¡to¡¡numbers¡£¡¡Also¡¡peculiar



to¡¡a¡¡science¡¡are¡¡the¡¡subjects¡¡the¡¡existence¡¡as¡¡well¡¡as¡¡the¡¡meaning



of¡¡which¡¡it¡¡assumes£»¡¡and¡¡the¡¡essential¡¡attributes¡¡of¡¡which¡¡it



investigates£»¡¡e¡£g¡£¡¡in¡¡arithmetic¡¡units£»¡¡in¡¡geometry¡¡points¡¡and



lines¡£¡¡Both¡¡the¡¡existence¡¡and¡¡the¡¡meaning¡¡of¡¡the¡¡subjects¡¡are



assumed¡¡by¡¡these¡¡sciences£»¡¡but¡¡of¡¡their¡¡essential¡¡attributes¡¡only



the¡¡meaning¡¡is¡¡assumed¡£¡¡For¡¡example¡¡arithmetic¡¡assumes¡¡the¡¡meaning



of¡¡odd¡¡and¡¡even£»¡¡square¡¡and¡¡cube£»¡¡geometry¡¡that¡¡of¡¡incommensurable£»¡¡or



of¡¡deflection¡¡or¡¡verging¡¡of¡¡lines£»¡¡whereas¡¡the¡¡existence¡¡of¡¡these



attributes¡¡is¡¡demonstrated¡¡by¡¡means¡¡of¡¡the¡¡axioms¡¡and¡¡from¡¡previous



conclusions¡¡as¡¡premisses¡£¡¡Astronomy¡¡too¡¡proceeds¡¡in¡¡the¡¡same¡¡way¡£



For¡¡indeed¡¡every¡¡demonstrative¡¡science¡¡has¡¡three¡¡elements£º¡¡£¨1£©¡¡that



which¡¡it¡¡posits£»¡¡the¡¡subject¡¡genus¡¡whose¡¡essential¡¡attributes¡¡it



examines£»¡¡£¨2£©¡¡the¡¡so¡­called¡¡axioms£»¡¡which¡¡are¡¡primary¡¡premisses¡¡of¡¡its



demonstration£»¡¡£¨3£©¡¡the¡¡attributes£»¡¡the¡¡meaning¡¡of¡¡which¡¡it¡¡assumes¡£



Yet¡¡some¡¡sciences¡¡may¡¡very¡¡well¡¡pass¡¡over¡¡some¡¡of¡¡these¡¡elements£»¡¡e¡£g¡£



we¡¡might¡¡not¡¡expressly¡¡posit¡¡the¡¡existence¡¡of¡¡the¡¡genus¡¡if¡¡its



existence¡¡were¡¡obvious¡¡£¨for¡¡instance£»¡¡the¡¡existence¡¡of¡¡hot¡¡and¡¡cold¡¡is



more¡¡evident¡¡than¡¡that¡¡of¡¡number£©£»¡¡or¡¡we¡¡might¡¡omit¡¡to¡¡assume



expressly¡¡the¡¡meaning¡¡of¡¡the¡¡attributes¡¡if¡¡it¡¡were¡¡well¡¡understood¡£¡¡In



the¡¡way¡¡the¡¡meaning¡¡of¡¡axioms£»¡¡such¡¡as¡¡'Take¡¡equals¡¡from¡¡equals¡¡and



equals¡¡remain'£»¡¡is¡¡well¡¡known¡¡and¡¡so¡¡not¡¡expressly¡¡assumed¡£



Nevertheless¡¡in¡¡the¡¡nature¡¡of¡¡the¡¡case¡¡the¡¡essential¡¡elements¡¡of



demonstration¡¡are¡¡three£º¡¡the¡¡subject£»¡¡the¡¡attributes£»¡¡and¡¡the¡¡basic



premisses¡£



¡¡¡¡That¡¡which¡¡expresses¡¡necessary¡¡self¡­grounded¡¡fact£»¡¡and¡¡which¡¡we¡¡must



necessarily¡¡believe£»¡¡is¡¡distinct¡¡both¡¡from¡¡the¡¡hypotheses¡¡of¡¡a¡¡science



and¡¡from¡¡illegitimate¡¡postulate¡­I¡¡say¡¡'must¡¡believe'£»¡¡because¡¡all



syllogism£»¡¡and¡¡therefore¡¡a¡¡fortiori¡¡demonstration£»¡¡is¡¡addressed¡¡not¡¡to



the¡¡spoken¡¡word£»¡¡but¡¡to¡¡the¡¡discourse¡¡within¡¡the¡¡soul£»¡¡and¡¡though¡¡we



can¡¡always¡¡raise¡¡objections¡¡to¡¡the¡¡spoken¡¡word£»¡¡to¡¡the¡¡inward



discourse¡¡we¡¡cannot¡¡always¡¡object¡£¡¡That¡¡which¡¡is¡¡capable¡¡of¡¡proof



but¡¡assumed¡¡by¡¡the¡¡teacher¡¡without¡¡proof¡¡is£»¡¡if¡¡the¡¡pupil¡¡believes¡¡and



accepts¡¡it£»¡¡hypothesis£»¡¡though¡¡only¡¡in¡¡a¡¡limited¡¡sense¡¡hypothesis¡­that



is£»¡¡relatively¡¡to¡¡the¡¡pupil£»¡¡if¡¡the¡¡pupil¡¡has¡¡no¡¡opinion¡¡or¡¡a¡¡contrary



opinion¡¡on¡¡the¡¡matter£»¡¡the¡¡same¡¡assumption¡¡is¡¡an¡¡illegitimate



postulate¡£¡¡Therein¡¡lies¡¡the¡¡distinction¡¡between¡¡hypothesis¡¡and



illegitimate¡¡postulate£º¡¡the¡¡latter¡¡is¡¡the¡¡contrary¡¡of¡¡the¡¡pupil's



opinion£»¡¡demonstrable£»¡¡but¡¡assumed¡¡and¡¡used¡¡without¡¡demonstration¡£



¡¡¡¡The¡¡definition¡­viz¡£¡¡those¡¡which¡¡are¡¡not¡¡expressed¡¡as¡¡statements¡¡that



anything¡¡is¡¡or¡¡is¡¡not¡­are¡¡not¡¡hypotheses£º¡¡but¡¡it¡¡is¡¡in¡¡the¡¡premisses



of¡¡a¡¡science¡¡that¡¡its¡¡hypotheses¡¡are¡¡contained¡£¡¡Definitions¡¡require



only¡¡to¡¡be¡¡understood£»¡¡and¡¡this¡¡is¡¡not¡¡hypothesis¡­unless¡¡it¡¡be



contended¡¡that¡¡the¡¡pupil's¡¡hearing¡¡is¡¡also¡¡an¡¡hypothesis¡¡required¡¡by



the¡¡teacher¡£¡¡Hypotheses£»¡¡on¡¡the¡¡contrary£»¡¡postulate¡¡facts¡¡on¡¡the¡¡being



of¡¡which¡¡depends¡¡the¡¡being¡¡of¡¡the¡¡fact¡¡inferred¡£¡¡Nor¡¡are¡¡the



geometer's¡¡hypotheses¡¡false£»¡¡as¡¡some¡¡have¡¡held£»¡¡urging¡¡that¡¡one¡¡must



not¡¡employ¡¡falsehood¡¡and¡¡that¡¡the¡¡geometer¡¡is¡¡uttering¡¡falsehood¡¡in



stating¡¡that¡¡the¡¡line¡¡which¡¡he¡¡draws¡¡is¡¡a¡¡foot¡¡long¡¡or¡¡straight£»



when¡¡it¡¡is¡¡actually¡¡neither¡£¡¡The¡¡truth¡¡is¡¡that¡¡the¡¡geometer¡¡does¡¡not



draw¡¡any¡¡conclusion¡¡from¡¡the¡¡being¡¡of¡¡the¡¡particular¡¡line¡¡of¡¡which



he¡¡speaks£»¡¡but¡¡from¡¡what¡¡his¡¡diagrams¡¡symbolize¡£¡¡A¡¡further¡¡distinction



is¡¡that¡¡all¡¡hypotheses¡¡and¡¡illegitimate¡¡postulates¡¡are¡¡either



universal¡¡or¡¡particular£»¡¡whereas¡¡a¡¡definition¡¡is¡¡neither¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11







¡¡¡¡So¡¡demonstration¡¡does¡¡not¡¡necessarily¡¡imply¡¡the¡¡being¡¡of¡¡Forms¡¡nor¡¡a



One¡¡beside¡¡a¡¡Many£»¡¡but¡¡it¡¡does¡¡necessarily¡¡imply¡¡the¡¡possibility¡¡of



truly¡¡predicating¡¡one¡¡of¡¡many£»¡¡since¡¡without¡¡this¡¡possibility¡¡we



cannot¡¡save¡¡the¡¡universal£»¡¡and¡¡if¡¡the¡¡universal¡¡goes£»¡¡the¡¡middle



term¡¡goes¡¡witb¡£¡¡it£»¡¡and¡¡so¡¡demonstration¡¡becomes¡¡impossible¡£¡¡We



conclude£»¡¡then£»¡¡that¡¡there¡¡must¡¡be¡¡a¡¡single¡¡identical¡¡term



unequivocally¡¡predicable¡¡of¡¡a¡¡number¡¡of¡¡individuals¡£



¡¡¡¡The¡¡law¡¡that¡¡it¡¡is¡¡impossible¡¡to¡¡affirm¡¡and¡¡deny¡¡simultaneously



the¡¡same¡¡predicate¡¡of¡¡the¡¡same¡¡subject¡¡is¡¡not¡¡expressly¡¡posited¡¡by¡¡any



demonstration¡¡except¡¡when¡¡the¡¡conclusion¡¡also¡¡has¡¡to¡¡be¡¡expressed¡¡in



that¡¡form£»¡¡in¡¡which¡¡case¡¡the¡¡proof¡¡lays¡¡down¡¡as¡¡its¡¡major¡¡premiss¡¡that



the¡¡major¡¡is¡¡truly¡¡affirmed¡¡of¡¡the¡¡middle¡¡but¡¡falsely¡¡denied¡£¡¡It¡¡makes



no¡¡difference£»¡¡however£»¡¡if¡¡we¡¡add¡¡to¡¡the¡¡middle£»¡¡or¡¡again¡¡to¡¡the¡¡minor



term£»¡¡the¡¡corresponding¡¡negative¡£¡¡For¡¡grant¡¡a¡¡minor¡¡term¡¡of¡¡which¡¡it



is¡¡true¡¡to¡¡predicate¡¡man¡­even¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡predicate



not¡­man¡¡of¡¡itstill¡¡grant¡¡simply¡¡that¡¡man¡¡is¡¡animal¡¡and¡¡not



not¡­animal£»¡¡and¡¡the¡¡conclusion¡¡follows£º¡¡for¡¡it¡¡will¡¡still¡¡be¡¡true¡¡to



say¡¡that¡¡Calliaseven¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡say¡¡that



not¡­Calliasis¡¡animal¡¡and¡¡not¡¡not¡­animal¡£¡¡The¡¡reason¡¡is¡¡that¡¡the



major¡¡term¡¡is¡¡predicable¡¡not¡¡only¡¡of¡¡the¡¡middle£»¡¡but¡¡of¡¡something



other¡¡than¡¡the¡¡middle¡¡as¡¡well£»¡¡being¡¡of¡¡wider¡¡application£»¡¡so¡¡that¡¡the



conclusion¡¡is¡¡not¡¡affected¡¡even¡¡if¡¡the¡¡middle¡¡is¡¡extended¡¡to¡¡cover¡¡the



original¡¡middle¡¡term¡¡and¡¡also¡¡what¡¡is¡¡not¡¡the¡¡original¡¡middle¡¡term¡£



¡¡¡¡The¡¡law¡¡that¡¡every¡¡predicate¡¡can¡¡be¡¡either¡¡truly¡¡affirmed¡¡or¡¡truly



denied¡¡of¡¡every¡¡subject¡¡is¡¡posited¡¡by¡¡such¡¡demonstration¡¡as¡¡uses



reductio¡¡ad¡¡impossibile£»¡¡and¡¡then¡¡not¡¡always¡¡universally£»¡¡but¡¡so¡¡far



as¡¡it¡¡is¡¡requisite£»¡¡within¡¡the¡¡limits£»¡¡that¡¡is£»¡¡of¡¡the¡¡genus¡­the



genus£»¡¡I¡¡mean¡¡£¨as¡¡I¡¡have¡¡already¡¡explained£©£»¡¡to¡¡which¡¡the¡¡man¡¡of



science¡¡applies¡¡his¡¡demonstrations¡£¡¡In¡¡virtue¡¡of¡¡the¡¡common¡¡elements



of¡¡demonstration¡­I¡¡mean¡¡the¡¡common¡¡axioms¡¡which¡¡are¡¡used¡¡as



premisses¡¡of¡¡demonstration£»¡¡not¡¡the¡¡subjects¡¡nor¡¡the¡¡attributes



demonstrated¡¡as¡¡belonging¡¡to¡¡them¡­all¡¡the¡¡sciences¡¡have¡¡communion¡¡with



one¡¡another£»¡¡and¡¡in¡¡communion¡¡with¡¡them¡¡all¡¡is¡¡dialectic¡¡and¡¡any



science¡¡which¡¡might¡¡attempt¡¡a¡¡universal¡¡proof¡¡of¡¡axioms¡¡such¡¡as¡¡the



law¡¡of¡¡excluded¡¡middle£»¡¡the¡¡law¡¡that¡¡the¡¡subtraction¡¡of¡¡equals¡¡from



equals¡¡leaves¡¡equal¡¡remainders£»¡¡or¡¡other¡¡axioms¡¡of¡¡the¡¡same¡¡kind¡£



Dialectic¡¡has¡¡no¡¡definite¡¡sphere¡¡of¡¡this¡¡kind£»¡¡not¡¡being¡¡confined¡¡to¡¡a



single¡¡genus¡£¡¡Otherwise¡¡its¡¡method¡¡would¡¡not¡¡be¡¡interrogative£»¡¡for¡¡the



interrogative¡¡method¡¡is¡¡barred¡¡to¡¡the¡¡demonstrator£»¡¡who¡¡cannot¡¡use¡¡the



opposite¡¡facts¡¡to¡¡prove¡¡the¡¡same¡¡nexus¡£¡¡This¡¡was¡¡shown¡¡in¡¡my¡¡work¡¡on



the¡¡syllogism¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡12







¡¡¡¡If¡¡a¡¡syllogistic¡¡question¡¡is¡¡equivalent¡¡to¡¡a¡¡proposition¡¡embodying



one¡¡of¡¡the¡¡two¡¡sides¡¡of¡¡a¡¡contradiction£»¡¡and¡¡if¡¡each¡¡science¡¡has¡¡its



peculiar¡¡propositions¡¡from¡¡which¡¡its¡¡peculiar¡¡conclusi
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü