qualification¡the¡¡fact¡¡falls¡¡under¡¡a¡¡separate¡¡science¡¡£¨for¡¡the¡¡subject
genus¡¡is¡¡separate£©£»¡¡but¡¡the¡¡reasoned¡¡fact¡¡concerns¡¡the¡¡superior
science£»¡¡to¡¡which¡¡the¡¡attributes¡¡essentially¡¡belong¡£¡¡Thus£»¡¡even
these¡¡apparent¡¡exceptions¡¡show¡¡that¡¡no¡¡attribute¡¡is¡¡strictly
demonstrable¡¡except¡¡from¡¡its¡¡'appropriate'¡¡basic¡¡truths£»¡¡which£»
however£»¡¡in¡¡the¡¡case¡¡of¡¡these¡¡sciences¡¡have¡¡the¡¡requisite¡¡identity
of¡¡character¡£
¡¡¡¡It¡¡is¡¡no¡¡less¡¡evident¡¡that¡¡the¡¡peculiar¡¡basic¡¡truths¡¡of¡¡each
inhering¡¡attribute¡¡are¡¡indemonstrable£»¡¡for¡¡basic¡¡truths¡¡from¡¡which
they¡¡might¡¡be¡¡deduced¡¡would¡¡be¡¡basic¡¡truths¡¡of¡¡all¡¡that¡¡is£»¡¡and¡¡the
science¡¡to¡¡which¡¡they¡¡belonged¡¡would¡¡possess¡¡universal¡¡sovereignty¡£
This¡¡is¡¡so¡¡because¡¡he¡¡knows¡¡better¡¡whose¡¡knowledge¡¡is¡¡deduced¡¡from
higher¡¡causes£»¡¡for¡¡his¡¡knowledge¡¡is¡¡from¡¡prior¡¡premisses¡¡when¡¡it
derives¡¡from¡¡causes¡¡themselves¡¡uncaused£º¡¡hence£»¡¡if¡¡he¡¡knows¡¡better
than¡¡others¡¡or¡¡best¡¡of¡¡all£»¡¡his¡¡knowledge¡¡would¡¡be¡¡science¡¡in¡¡a¡¡higher
or¡¡the¡¡highest¡¡degree¡£¡¡But£»¡¡as¡¡things¡¡are£»¡¡demonstration¡¡is¡¡not
transferable¡¡to¡¡another¡¡genus£»¡¡with¡¡such¡¡exceptions¡¡as¡¡we¡¡have
mentioned¡¡of¡¡the¡¡application¡¡of¡¡geometrical¡¡demonstrations¡¡to¡¡theorems
in¡¡mechanics¡¡or¡¡optics£»¡¡or¡¡of¡¡arithmetical¡¡demonstrations¡¡to¡¡those
of¡¡harmonics¡£
¡¡¡¡It¡¡is¡¡hard¡¡to¡¡be¡¡sure¡¡whether¡¡one¡¡knows¡¡or¡¡not£»¡¡for¡¡it¡¡is¡¡hard¡¡to¡¡be
sure¡¡whether¡¡one's¡¡knowledge¡¡is¡¡based¡¡on¡¡the¡¡basic¡¡truths
appropriate¡¡to¡¡each¡¡attribute¡the¡¡differentia¡¡of¡¡true¡¡knowledge¡£¡¡We
think¡¡we¡¡have¡¡scientific¡¡knowledge¡¡if¡¡we¡¡have¡¡reasoned¡¡from¡¡true¡¡and
primary¡¡premisses¡£¡¡But¡¡that¡¡is¡¡not¡¡so£º¡¡the¡¡conclusion¡¡must¡¡be
homogeneous¡¡with¡¡the¡¡basic¡¡facts¡¡of¡¡the¡¡science¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10
¡¡¡¡I¡¡call¡¡the¡¡basic¡¡truths¡¡of¡¡every¡¡genus¡¡those¡¡clements¡¡in¡¡it¡¡the
existence¡¡of¡¡which¡¡cannot¡¡be¡¡proved¡£¡¡As¡¡regards¡¡both¡¡these¡¡primary
truths¡¡and¡¡the¡¡attributes¡¡dependent¡¡on¡¡them¡¡the¡¡meaning¡¡of¡¡the¡¡name¡¡is
assumed¡£¡¡The¡¡fact¡¡of¡¡their¡¡existence¡¡as¡¡regards¡¡the¡¡primary¡¡truths
must¡¡be¡¡assumed£»¡¡but¡¡it¡¡has¡¡to¡¡be¡¡proved¡¡of¡¡the¡¡remainder£»¡¡the
attributes¡£¡¡Thus¡¡we¡¡assume¡¡the¡¡meaning¡¡alike¡¡of¡¡unity£»¡¡straight£»¡¡and
triangular£»¡¡but¡¡while¡¡as¡¡regards¡¡unity¡¡and¡¡magnitude¡¡we¡¡assume¡¡also
the¡¡fact¡¡of¡¡their¡¡existence£»¡¡in¡¡the¡¡case¡¡of¡¡the¡¡remainder¡¡proof¡¡is
required¡£
¡¡¡¡Of¡¡the¡¡basic¡¡truths¡¡used¡¡in¡¡the¡¡demonstrative¡¡sciences¡¡some¡¡are
peculiar¡¡to¡¡each¡¡science£»¡¡and¡¡some¡¡are¡¡common£»¡¡but¡¡common¡¡only¡¡in
the¡¡sense¡¡of¡¡analogous£»¡¡being¡¡of¡¡use¡¡only¡¡in¡¡so¡¡far¡¡as¡¡they¡¡fall
within¡¡the¡¡genus¡¡constituting¡¡the¡¡province¡¡of¡¡the¡¡science¡¡in¡¡question¡£
¡¡¡¡Peculiar¡¡truths¡¡are£»¡¡e¡£g¡£¡¡the¡¡definitions¡¡of¡¡line¡¡and¡¡straight£»
common¡¡truths¡¡are¡¡such¡¡as¡¡'take¡¡equals¡¡from¡¡equals¡¡and¡¡equals¡¡remain'¡£
Only¡¡so¡¡much¡¡of¡¡these¡¡common¡¡truths¡¡is¡¡required¡¡as¡¡falls¡¡within¡¡the
genus¡¡in¡¡question£º¡¡for¡¡a¡¡truth¡¡of¡¡this¡¡kind¡¡will¡¡have¡¡the¡¡same¡¡force
even¡¡if¡¡not¡¡used¡¡generally¡¡but¡¡applied¡¡by¡¡the¡¡geometer¡¡only¡¡to
magnitudes£»¡¡or¡¡by¡¡the¡¡arithmetician¡¡only¡¡to¡¡numbers¡£¡¡Also¡¡peculiar
to¡¡a¡¡science¡¡are¡¡the¡¡subjects¡¡the¡¡existence¡¡as¡¡well¡¡as¡¡the¡¡meaning
of¡¡which¡¡it¡¡assumes£»¡¡and¡¡the¡¡essential¡¡attributes¡¡of¡¡which¡¡it
investigates£»¡¡e¡£g¡£¡¡in¡¡arithmetic¡¡units£»¡¡in¡¡geometry¡¡points¡¡and
lines¡£¡¡Both¡¡the¡¡existence¡¡and¡¡the¡¡meaning¡¡of¡¡the¡¡subjects¡¡are
assumed¡¡by¡¡these¡¡sciences£»¡¡but¡¡of¡¡their¡¡essential¡¡attributes¡¡only
the¡¡meaning¡¡is¡¡assumed¡£¡¡For¡¡example¡¡arithmetic¡¡assumes¡¡the¡¡meaning
of¡¡odd¡¡and¡¡even£»¡¡square¡¡and¡¡cube£»¡¡geometry¡¡that¡¡of¡¡incommensurable£»¡¡or
of¡¡deflection¡¡or¡¡verging¡¡of¡¡lines£»¡¡whereas¡¡the¡¡existence¡¡of¡¡these
attributes¡¡is¡¡demonstrated¡¡by¡¡means¡¡of¡¡the¡¡axioms¡¡and¡¡from¡¡previous
conclusions¡¡as¡¡premisses¡£¡¡Astronomy¡¡too¡¡proceeds¡¡in¡¡the¡¡same¡¡way¡£
For¡¡indeed¡¡every¡¡demonstrative¡¡science¡¡has¡¡three¡¡elements£º¡¡£¨1£©¡¡that
which¡¡it¡¡posits£»¡¡the¡¡subject¡¡genus¡¡whose¡¡essential¡¡attributes¡¡it
examines£»¡¡£¨2£©¡¡the¡¡so¡called¡¡axioms£»¡¡which¡¡are¡¡primary¡¡premisses¡¡of¡¡its
demonstration£»¡¡£¨3£©¡¡the¡¡attributes£»¡¡the¡¡meaning¡¡of¡¡which¡¡it¡¡assumes¡£
Yet¡¡some¡¡sciences¡¡may¡¡very¡¡well¡¡pass¡¡over¡¡some¡¡of¡¡these¡¡elements£»¡¡e¡£g¡£
we¡¡might¡¡not¡¡expressly¡¡posit¡¡the¡¡existence¡¡of¡¡the¡¡genus¡¡if¡¡its
existence¡¡were¡¡obvious¡¡£¨for¡¡instance£»¡¡the¡¡existence¡¡of¡¡hot¡¡and¡¡cold¡¡is
more¡¡evident¡¡than¡¡that¡¡of¡¡number£©£»¡¡or¡¡we¡¡might¡¡omit¡¡to¡¡assume
expressly¡¡the¡¡meaning¡¡of¡¡the¡¡attributes¡¡if¡¡it¡¡were¡¡well¡¡understood¡£¡¡In
the¡¡way¡¡the¡¡meaning¡¡of¡¡axioms£»¡¡such¡¡as¡¡'Take¡¡equals¡¡from¡¡equals¡¡and
equals¡¡remain'£»¡¡is¡¡well¡¡known¡¡and¡¡so¡¡not¡¡expressly¡¡assumed¡£
Nevertheless¡¡in¡¡the¡¡nature¡¡of¡¡the¡¡case¡¡the¡¡essential¡¡elements¡¡of
demonstration¡¡are¡¡three£º¡¡the¡¡subject£»¡¡the¡¡attributes£»¡¡and¡¡the¡¡basic
premisses¡£
¡¡¡¡That¡¡which¡¡expresses¡¡necessary¡¡self¡grounded¡¡fact£»¡¡and¡¡which¡¡we¡¡must
necessarily¡¡believe£»¡¡is¡¡distinct¡¡both¡¡from¡¡the¡¡hypotheses¡¡of¡¡a¡¡science
and¡¡from¡¡illegitimate¡¡postulate¡I¡¡say¡¡'must¡¡believe'£»¡¡because¡¡all
syllogism£»¡¡and¡¡therefore¡¡a¡¡fortiori¡¡demonstration£»¡¡is¡¡addressed¡¡not¡¡to
the¡¡spoken¡¡word£»¡¡but¡¡to¡¡the¡¡discourse¡¡within¡¡the¡¡soul£»¡¡and¡¡though¡¡we
can¡¡always¡¡raise¡¡objections¡¡to¡¡the¡¡spoken¡¡word£»¡¡to¡¡the¡¡inward
discourse¡¡we¡¡cannot¡¡always¡¡object¡£¡¡That¡¡which¡¡is¡¡capable¡¡of¡¡proof
but¡¡assumed¡¡by¡¡the¡¡teacher¡¡without¡¡proof¡¡is£»¡¡if¡¡the¡¡pupil¡¡believes¡¡and
accepts¡¡it£»¡¡hypothesis£»¡¡though¡¡only¡¡in¡¡a¡¡limited¡¡sense¡¡hypothesis¡that
is£»¡¡relatively¡¡to¡¡the¡¡pupil£»¡¡if¡¡the¡¡pupil¡¡has¡¡no¡¡opinion¡¡or¡¡a¡¡contrary
opinion¡¡on¡¡the¡¡matter£»¡¡the¡¡same¡¡assumption¡¡is¡¡an¡¡illegitimate
postulate¡£¡¡Therein¡¡lies¡¡the¡¡distinction¡¡between¡¡hypothesis¡¡and
illegitimate¡¡postulate£º¡¡the¡¡latter¡¡is¡¡the¡¡contrary¡¡of¡¡the¡¡pupil's
opinion£»¡¡demonstrable£»¡¡but¡¡assumed¡¡and¡¡used¡¡without¡¡demonstration¡£
¡¡¡¡The¡¡definition¡viz¡£¡¡those¡¡which¡¡are¡¡not¡¡expressed¡¡as¡¡statements¡¡that
anything¡¡is¡¡or¡¡is¡¡not¡are¡¡not¡¡hypotheses£º¡¡but¡¡it¡¡is¡¡in¡¡the¡¡premisses
of¡¡a¡¡science¡¡that¡¡its¡¡hypotheses¡¡are¡¡contained¡£¡¡Definitions¡¡require
only¡¡to¡¡be¡¡understood£»¡¡and¡¡this¡¡is¡¡not¡¡hypothesis¡unless¡¡it¡¡be
contended¡¡that¡¡the¡¡pupil's¡¡hearing¡¡is¡¡also¡¡an¡¡hypothesis¡¡required¡¡by
the¡¡teacher¡£¡¡Hypotheses£»¡¡on¡¡the¡¡contrary£»¡¡postulate¡¡facts¡¡on¡¡the¡¡being
of¡¡which¡¡depends¡¡the¡¡being¡¡of¡¡the¡¡fact¡¡inferred¡£¡¡Nor¡¡are¡¡the
geometer's¡¡hypotheses¡¡false£»¡¡as¡¡some¡¡have¡¡held£»¡¡urging¡¡that¡¡one¡¡must
not¡¡employ¡¡falsehood¡¡and¡¡that¡¡the¡¡geometer¡¡is¡¡uttering¡¡falsehood¡¡in
stating¡¡that¡¡the¡¡line¡¡which¡¡he¡¡draws¡¡is¡¡a¡¡foot¡¡long¡¡or¡¡straight£»
when¡¡it¡¡is¡¡actually¡¡neither¡£¡¡The¡¡truth¡¡is¡¡that¡¡the¡¡geometer¡¡does¡¡not
draw¡¡any¡¡conclusion¡¡from¡¡the¡¡being¡¡of¡¡the¡¡particular¡¡line¡¡of¡¡which
he¡¡speaks£»¡¡but¡¡from¡¡what¡¡his¡¡diagrams¡¡symbolize¡£¡¡A¡¡further¡¡distinction
is¡¡that¡¡all¡¡hypotheses¡¡and¡¡illegitimate¡¡postulates¡¡are¡¡either
universal¡¡or¡¡particular£»¡¡whereas¡¡a¡¡definition¡¡is¡¡neither¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11
¡¡¡¡So¡¡demonstration¡¡does¡¡not¡¡necessarily¡¡imply¡¡the¡¡being¡¡of¡¡Forms¡¡nor¡¡a
One¡¡beside¡¡a¡¡Many£»¡¡but¡¡it¡¡does¡¡necessarily¡¡imply¡¡the¡¡possibility¡¡of
truly¡¡predicating¡¡one¡¡of¡¡many£»¡¡since¡¡without¡¡this¡¡possibility¡¡we
cannot¡¡save¡¡the¡¡universal£»¡¡and¡¡if¡¡the¡¡universal¡¡goes£»¡¡the¡¡middle
term¡¡goes¡¡witb¡£¡¡it£»¡¡and¡¡so¡¡demonstration¡¡becomes¡¡impossible¡£¡¡We
conclude£»¡¡then£»¡¡that¡¡there¡¡must¡¡be¡¡a¡¡single¡¡identical¡¡term
unequivocally¡¡predicable¡¡of¡¡a¡¡number¡¡of¡¡individuals¡£
¡¡¡¡The¡¡law¡¡that¡¡it¡¡is¡¡impossible¡¡to¡¡affirm¡¡and¡¡deny¡¡simultaneously
the¡¡same¡¡predicate¡¡of¡¡the¡¡same¡¡subject¡¡is¡¡not¡¡expressly¡¡posited¡¡by¡¡any
demonstration¡¡except¡¡when¡¡the¡¡conclusion¡¡also¡¡has¡¡to¡¡be¡¡expressed¡¡in
that¡¡form£»¡¡in¡¡which¡¡case¡¡the¡¡proof¡¡lays¡¡down¡¡as¡¡its¡¡major¡¡premiss¡¡that
the¡¡major¡¡is¡¡truly¡¡affirmed¡¡of¡¡the¡¡middle¡¡but¡¡falsely¡¡denied¡£¡¡It¡¡makes
no¡¡difference£»¡¡however£»¡¡if¡¡we¡¡add¡¡to¡¡the¡¡middle£»¡¡or¡¡again¡¡to¡¡the¡¡minor
term£»¡¡the¡¡corresponding¡¡negative¡£¡¡For¡¡grant¡¡a¡¡minor¡¡term¡¡of¡¡which¡¡it
is¡¡true¡¡to¡¡predicate¡¡man¡even¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡predicate
not¡man¡¡of¡¡itstill¡¡grant¡¡simply¡¡that¡¡man¡¡is¡¡animal¡¡and¡¡not
not¡animal£»¡¡and¡¡the¡¡conclusion¡¡follows£º¡¡for¡¡it¡¡will¡¡still¡¡be¡¡true¡¡to
say¡¡that¡¡Calliaseven¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡say¡¡that
not¡Calliasis¡¡animal¡¡and¡¡not¡¡not¡animal¡£¡¡The¡¡reason¡¡is¡¡that¡¡the
major¡¡term¡¡is¡¡predicable¡¡not¡¡only¡¡of¡¡the¡¡middle£»¡¡but¡¡of¡¡something
other¡¡than¡¡the¡¡middle¡¡as¡¡well£»¡¡being¡¡of¡¡wider¡¡application£»¡¡so¡¡that¡¡the
conclusion¡¡is¡¡not¡¡affected¡¡even¡¡if¡¡the¡¡middle¡¡is¡¡extended¡¡to¡¡cover¡¡the
original¡¡middle¡¡term¡¡and¡¡also¡¡what¡¡is¡¡not¡¡the¡¡original¡¡middle¡¡term¡£
¡¡¡¡The¡¡law¡¡that¡¡every¡¡predicate¡¡can¡¡be¡¡either¡¡truly¡¡affirmed¡¡or¡¡truly
denied¡¡of¡¡every¡¡subject¡¡is¡¡posited¡¡by¡¡such¡¡demonstration¡¡as¡¡uses
reductio¡¡ad¡¡impossibile£»¡¡and¡¡then¡¡not¡¡always¡¡universally£»¡¡but¡¡so¡¡far
as¡¡it¡¡is¡¡requisite£»¡¡within¡¡the¡¡limits£»¡¡that¡¡is£»¡¡of¡¡the¡¡genus¡the
genus£»¡¡I¡¡mean¡¡£¨as¡¡I¡¡have¡¡already¡¡explained£©£»¡¡to¡¡which¡¡the¡¡man¡¡of
science¡¡applies¡¡his¡¡demonstrations¡£¡¡In¡¡virtue¡¡of¡¡the¡¡common¡¡elements
of¡¡demonstration¡I¡¡mean¡¡the¡¡common¡¡axioms¡¡which¡¡are¡¡used¡¡as
premisses¡¡of¡¡demonstration£»¡¡not¡¡the¡¡subjects¡¡nor¡¡the¡¡attributes
demonstrated¡¡as¡¡belonging¡¡to¡¡them¡all¡¡the¡¡sciences¡¡have¡¡communion¡¡with
one¡¡another£»¡¡and¡¡in¡¡communion¡¡with¡¡them¡¡all¡¡is¡¡dialectic¡¡and¡¡any
science¡¡which¡¡might¡¡attempt¡¡a¡¡universal¡¡proof¡¡of¡¡axioms¡¡such¡¡as¡¡the
law¡¡of¡¡excluded¡¡middle£»¡¡the¡¡law¡¡that¡¡the¡¡subtraction¡¡of¡¡equals¡¡from
equals¡¡leaves¡¡equal¡¡remainders£»¡¡or¡¡other¡¡axioms¡¡of¡¡the¡¡same¡¡kind¡£
Dialectic¡¡has¡¡no¡¡definite¡¡sphere¡¡of¡¡this¡¡kind£»¡¡not¡¡being¡¡confined¡¡to¡¡a
single¡¡genus¡£¡¡Otherwise¡¡its¡¡method¡¡would¡¡not¡¡be¡¡interrogative£»¡¡for¡¡the
interrogative¡¡method¡¡is¡¡barred¡¡to¡¡the¡¡demonstrator£»¡¡who¡¡cannot¡¡use¡¡the
opposite¡¡facts¡¡to¡¡prove¡¡the¡¡same¡¡nexus¡£¡¡This¡¡was¡¡shown¡¡in¡¡my¡¡work¡¡on
the¡¡syllogism¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡12
¡¡¡¡If¡¡a¡¡syllogistic¡¡question¡¡is¡¡equivalent¡¡to¡¡a¡¡proposition¡¡embodying
one¡¡of¡¡the¡¡two¡¡sides¡¡of¡¡a¡¡contradiction£»¡¡and¡¡if¡¡each¡¡science¡¡has¡¡its
peculiar¡¡propositions¡¡from¡¡which¡¡its¡¡peculiar¡¡conclusi
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£
ÔÞÒ»ÏÂ
Ìí¼ÓÊéÇ©¼ÓÈëÊé¼Ü