¡¶posterior analytics¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

posterior analytics- µÚ6²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡



peculiar¡¡propositions¡¡from¡¡which¡¡its¡¡peculiar¡¡conclusion¡¡is¡¡developed£»



then¡¡there¡¡is¡¡such¡¡a¡¡thing¡¡as¡¡a¡¡distinctively¡¡scientific¡¡question£»¡¡and



it¡¡is¡¡the¡¡interrogative¡¡form¡¡of¡¡the¡¡premisses¡¡from¡¡which¡¡the



'appropriate'¡¡conclusion¡¡of¡¡each¡¡science¡¡is¡¡developed¡£¡¡Hence¡¡it¡¡is



clear¡¡that¡¡not¡¡every¡¡question¡¡will¡¡be¡¡relevant¡¡to¡¡geometry£»¡¡nor¡¡to



medicine£»¡¡nor¡¡to¡¡any¡¡other¡¡science£º¡¡only¡¡those¡¡questions¡¡will¡¡be



geometrical¡¡which¡¡form¡¡premisses¡¡for¡¡the¡¡proof¡¡of¡¡the¡¡theorems¡¡of



geometry¡¡or¡¡of¡¡any¡¡other¡¡science£»¡¡such¡¡as¡¡optics£»¡¡which¡¡uses¡¡the



same¡¡basic¡¡truths¡¡as¡¡geometry¡£¡¡Of¡¡the¡¡other¡¡sciences¡¡the¡¡like¡¡is¡¡true¡£



Of¡¡these¡¡questions¡¡the¡¡geometer¡¡is¡¡bound¡¡to¡¡give¡¡his¡¡account£»¡¡using



the¡¡basic¡¡truths¡¡of¡¡geometry¡¡in¡¡conjunction¡¡with¡¡his¡¡previous



conclusions£»¡¡of¡¡the¡¡basic¡¡truths¡¡the¡¡geometer£»¡¡as¡¡such£»¡¡is¡¡not¡¡bound





to¡¡give¡¡any¡¡account¡£¡¡The¡¡like¡¡is¡¡true¡¡of¡¡the¡¡other¡¡sciences¡£¡¡There



is¡¡a¡¡limit£»¡¡then£»¡¡to¡¡the¡¡questions¡¡which¡¡we¡¡may¡¡put¡¡to¡¡each¡¡man¡¡of



science£»¡¡nor¡¡is¡¡each¡¡man¡¡of¡¡science¡¡bound¡¡to¡¡answer¡¡all¡¡inquiries¡¡on



each¡¡several¡¡subject£»¡¡but¡¡only¡¡such¡¡as¡¡fall¡¡within¡¡the¡¡defined¡¡field



of¡¡his¡¡own¡¡science¡£¡¡If£»¡¡then£»¡¡in¡¡controversy¡¡with¡¡a¡¡geometer¡¡qua



geometer¡¡the¡¡disputant¡¡confines¡¡himself¡¡to¡¡geometry¡¡and¡¡proves



anything¡¡from¡¡geometrical¡¡premisses£»¡¡he¡¡is¡¡clearly¡¡to¡¡be¡¡applauded£»¡¡if



he¡¡goes¡¡outside¡¡these¡¡he¡¡will¡¡be¡¡at¡¡fault£»¡¡and¡¡obviously¡¡cannot¡¡even



refute¡¡the¡¡geometer¡¡except¡¡accidentally¡£¡¡One¡¡should¡¡therefore¡¡not



discuss¡¡geometry¡¡among¡¡those¡¡who¡¡are¡¡not¡¡geometers£»¡¡for¡¡in¡¡such¡¡a



company¡¡an¡¡unsound¡¡argument¡¡will¡¡pass¡¡unnoticed¡£¡¡This¡¡is



correspondingly¡¡true¡¡in¡¡the¡¡other¡¡sciences¡£



¡¡¡¡Since¡¡there¡¡are¡¡'geometrical'¡¡questions£»¡¡does¡¡it¡¡follow¡¡that¡¡there



are¡¡also¡¡distinctively¡¡'ungeometrical'¡¡questions£¿¡¡Further£»¡¡in¡¡each



special¡¡science¡­geometry¡¡for¡¡instance¡­what¡¡kind¡¡of¡¡error¡¡is¡¡it¡¡that



may¡¡vitiate¡¡questions£»¡¡and¡¡yet¡¡not¡¡exclude¡¡them¡¡from¡¡that¡¡science£¿



Again£»¡¡is¡¡the¡¡erroneous¡¡conclusion¡¡one¡¡constructed¡¡from¡¡premisses



opposite¡¡to¡¡the¡¡true¡¡premisses£»¡¡or¡¡is¡¡it¡¡formal¡¡fallacy¡¡though¡¡drawn



from¡¡geometrical¡¡premisses£¿¡¡Or£»¡¡perhaps£»¡¡the¡¡erroneous¡¡conclusion¡¡is



due¡¡to¡¡the¡¡drawing¡¡of¡¡premisses¡¡from¡¡another¡¡science£»¡¡e¡£g¡£¡¡in¡¡a



geometrical¡¡controversy¡¡a¡¡musical¡¡question¡¡is¡¡distinctively



ungeometrical£»¡¡whereas¡¡the¡¡notion¡¡that¡¡parallels¡¡meet¡¡is¡¡in¡¡one



sense¡¡geometrical£»¡¡being¡¡ungeometrical¡¡in¡¡a¡¡different¡¡fashion£º¡¡the



reason¡¡being¡¡that¡¡'ungeometrical'£»¡¡like¡¡'unrhythmical'£»¡¡is



equivocal£»¡¡meaning¡¡in¡¡the¡¡one¡¡case¡¡not¡¡geometry¡¡at¡¡all£»¡¡in¡¡the¡¡other



bad¡¡geometry£¿¡¡It¡¡is¡¡this¡¡error£»¡¡i¡£e¡£¡¡error¡¡based¡¡on¡¡premisses¡¡of



this¡¡kind¡­'of'¡¡the¡¡science¡¡but¡¡false¡­that¡¡is¡¡the¡¡contrary¡¡of



science¡£¡¡In¡¡mathematics¡¡the¡¡formal¡¡fallacy¡¡is¡¡not¡¡so¡¡common£»¡¡because



it¡¡is¡¡the¡¡middle¡¡term¡¡in¡¡which¡¡the¡¡ambiguity¡¡lies£»¡¡since¡¡the¡¡major



is¡¡predicated¡¡of¡¡the¡¡whole¡¡of¡¡the¡¡middle¡¡and¡¡the¡¡middle¡¡of¡¡the¡¡whole



of¡¡the¡¡minor¡¡£¨the¡¡predicate¡¡of¡¡course¡¡never¡¡has¡¡the¡¡prefix¡¡'all'£©£»¡¡and



in¡¡mathematics¡¡one¡¡can£»¡¡so¡¡to¡¡speak£»¡¡see¡¡these¡¡middle¡¡terms¡¡with¡¡an



intellectual¡¡vision£»¡¡while¡¡in¡¡dialectic¡¡the¡¡ambiguity¡¡may¡¡escape



detection¡£¡¡E¡£g¡£¡¡'Is¡¡every¡¡circle¡¡a¡¡figure£¿'¡¡A¡¡diagram¡¡shows¡¡that



this¡¡is¡¡so£»¡¡but¡¡the¡¡minor¡¡premiss¡¡'Are¡¡epics¡¡circles£¿'¡¡is¡¡shown¡¡by¡¡the



diagram¡¡to¡¡be¡¡false¡£



¡¡¡¡If¡¡a¡¡proof¡¡has¡¡an¡¡inductive¡¡minor¡¡premiss£»¡¡one¡¡should¡¡not¡¡bring¡¡an



'objection'¡¡against¡¡it¡£¡¡For¡¡since¡¡every¡¡premiss¡¡must¡¡be¡¡applicable



to¡¡a¡¡number¡¡of¡¡cases¡¡£¨otherwise¡¡it¡¡will¡¡not¡¡be¡¡true¡¡in¡¡every¡¡instance£»



which£»¡¡since¡¡the¡¡syllogism¡¡proceeds¡¡from¡¡universals£»¡¡it¡¡must¡¡be£©£»¡¡then



assuredly¡¡the¡¡same¡¡is¡¡true¡¡of¡¡an¡¡'objection'£»¡¡since¡¡premisses¡¡and



'objections'¡¡are¡¡so¡¡far¡¡the¡¡same¡¡that¡¡anything¡¡which¡¡can¡¡be¡¡validly



advanced¡¡as¡¡an¡¡'objection'¡¡must¡¡be¡¡such¡¡that¡¡it¡¡could¡¡take¡¡the¡¡form¡¡of



a¡¡premiss£»¡¡either¡¡demonstrative¡¡or¡¡dialectical¡£¡¡On¡¡the¡¡other¡¡hand£»



arguments¡¡formally¡¡illogical¡¡do¡¡sometimes¡¡occur¡¡through¡¡taking¡¡as



middles¡¡mere¡¡attributes¡¡of¡¡the¡¡major¡¡and¡¡minor¡¡terms¡£¡¡An¡¡instance¡¡of



this¡¡is¡¡Caeneus'¡¡proof¡¡that¡¡fire¡¡increases¡¡in¡¡geometrical



proportion£º¡¡'Fire'£»¡¡he¡¡argues£»¡¡'increases¡¡rapidly£»¡¡and¡¡so¡¡does



geometrical¡¡proportion'¡£¡¡There¡¡is¡¡no¡¡syllogism¡¡so£»¡¡but¡¡there¡¡is¡¡a



syllogism¡¡if¡¡the¡¡most¡¡rapidly¡¡increasing¡¡proportion¡¡is¡¡geometrical¡¡and



the¡¡most¡¡rapidly¡¡increasing¡¡proportion¡¡is¡¡attributable¡¡to¡¡fire¡¡in



its¡¡motion¡£¡¡Sometimes£»¡¡no¡¡doubt£»¡¡it¡¡is¡¡impossible¡¡to¡¡reason¡¡from



premisses¡¡predicating¡¡mere¡¡attributes£º¡¡but¡¡sometimes¡¡it¡¡is¡¡possible£»



though¡¡the¡¡possibility¡¡is¡¡overlooked¡£¡¡If¡¡false¡¡premisses¡¡could¡¡never



give¡¡true¡¡conclusions¡¡'resolution'¡¡would¡¡be¡¡easy£»¡¡for¡¡premisses¡¡and



conclusion¡¡would¡¡in¡¡that¡¡case¡¡inevitably¡¡reciprocate¡£¡¡I¡¡might¡¡then



argue¡¡thus£º¡¡let¡¡A¡¡be¡¡an¡¡existing¡¡fact£»¡¡let¡¡the¡¡existence¡¡of¡¡A¡¡imply



such¡¡and¡¡such¡¡facts¡¡actually¡¡known¡¡to¡¡me¡¡to¡¡exist£»¡¡which¡¡we¡¡may¡¡call



B¡£¡¡I¡¡can¡¡now£»¡¡since¡¡they¡¡reciprocate£»¡¡infer¡¡A¡¡from¡¡B¡£



¡¡¡¡Reciprocation¡¡of¡¡premisses¡¡and¡¡conclusion¡¡is¡¡more¡¡frequent¡¡in



mathematics£»¡¡because¡¡mathematics¡¡takes¡¡definitions£»¡¡but¡¡never¡¡an



accident£»¡¡for¡¡its¡¡premisses¡­a¡¡second¡¡characteristic¡¡distinguishing



mathematical¡¡reasoning¡¡from¡¡dialectical¡¡disputations¡£



¡¡¡¡A¡¡science¡¡expands¡¡not¡¡by¡¡the¡¡interposition¡¡of¡¡fresh¡¡middle¡¡terms£»



but¡¡by¡¡the¡¡apposition¡¡of¡¡fresh¡¡extreme¡¡terms¡£¡¡E¡£g¡£¡¡A¡¡is¡¡predicated



of¡¡B£»¡¡B¡¡of¡¡C£»¡¡C¡¡of¡¡D£»¡¡and¡¡so¡¡indefinitely¡£¡¡Or¡¡the¡¡expansion¡¡may¡¡be



lateral£º¡¡e¡£g¡£¡¡one¡¡major¡¡A£»¡¡may¡¡be¡¡proved¡¡of¡¡two¡¡minors£»¡¡C¡¡and¡¡E¡£



Thus¡¡let¡¡A¡¡represent¡¡number¡­a¡¡number¡¡or¡¡number¡¡taken



indeterminately£»¡¡B¡¡determinate¡¡odd¡¡number£»¡¡C¡¡any¡¡particular¡¡odd



number¡£¡¡We¡¡can¡¡then¡¡predicate¡¡A¡¡of¡¡C¡£¡¡Next¡¡let¡¡D¡¡represent¡¡determinate



even¡¡number£»¡¡and¡¡E¡¡even¡¡number¡£¡¡Then¡¡A¡¡is¡¡predicable¡¡of¡¡E¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡13







¡¡¡¡Knowledge¡¡of¡¡the¡¡fact¡¡differs¡¡from¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact¡£



To¡¡begin¡¡with£»¡¡they¡¡differ¡¡within¡¡the¡¡same¡¡science¡¡and¡¡in¡¡two¡¡ways£º



£¨1£©¡¡when¡¡the¡¡premisses¡¡of¡¡the¡¡syllogism¡¡are¡¡not¡¡immediate¡¡£¨for¡¡then



the¡¡proximate¡¡cause¡¡is¡¡not¡¡contained¡¡in¡¡them¡­a¡¡necessary¡¡condition



of¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact£©£º¡¡£¨2£©¡¡when¡¡the¡¡premisses¡¡are



immediate£»¡¡but¡¡instead¡¡of¡¡the¡¡cause¡¡the¡¡better¡¡known¡¡of¡¡the¡¡two



reciprocals¡¡is¡¡taken¡¡as¡¡the¡¡middle£»¡¡for¡¡of¡¡two¡¡reciprocally¡¡predicable



terms¡¡the¡¡one¡¡which¡¡is¡¡not¡¡the¡¡cause¡¡may¡¡quite¡¡easily¡¡be¡¡the¡¡better



known¡¡and¡¡so¡¡become¡¡the¡¡middle¡¡term¡¡of¡¡the¡¡demonstration¡£¡¡Thus¡¡£¨2£©¡¡£¨a£©



you¡¡might¡¡prove¡¡as¡¡follows¡¡that¡¡the¡¡planets¡¡are¡¡near¡¡because¡¡they¡¡do



not¡¡twinkle£º¡¡let¡¡C¡¡be¡¡the¡¡planets£»¡¡B¡¡not¡¡twinkling£»¡¡A¡¡proximity¡£



Then¡¡B¡¡is¡¡predicable¡¡of¡¡C£»¡¡for¡¡the¡¡planets¡¡do¡¡not¡¡twinkle¡£¡¡But¡¡A¡¡is



also¡¡predicable¡¡of¡¡B£»¡¡since¡¡that¡¡which¡¡does¡¡not¡¡twinkle¡¡is¡¡nearwe



must¡¡take¡¡this¡¡truth¡¡as¡¡having¡¡been¡¡reached¡¡by¡¡induction¡¡or



sense¡­perception¡£¡¡Therefore¡¡A¡¡is¡¡a¡¡necessary¡¡predicate¡¡of¡¡C£»¡¡so¡¡that



we¡¡have¡¡demonstrated¡¡that¡¡the¡¡planets¡¡are¡¡near¡£¡¡This¡¡syllogism£»



then£»¡¡proves¡¡not¡¡the¡¡reasoned¡¡fact¡¡but¡¡only¡¡the¡¡fact£»¡¡since¡¡they¡¡are



not¡¡near¡¡because¡¡they¡¡do¡¡not¡¡twinkle£»¡¡but£»¡¡because¡¡they¡¡are¡¡near£»¡¡do



not¡¡twinkle¡£¡¡The¡¡major¡¡and¡¡middle¡¡of¡¡the¡¡proof£»¡¡however£»¡¡may¡¡be



reversed£»¡¡and¡¡then¡¡the¡¡demonstration¡¡will¡¡be¡¡of¡¡the¡¡reasoned¡¡fact¡£



Thus£º¡¡let¡¡C¡¡be¡¡the¡¡planets£»¡¡B¡¡proximity£»¡¡A¡¡not¡¡twinkling¡£¡¡Then¡¡B¡¡is¡¡an



attribute¡¡of¡¡C£»¡¡and¡¡A¡­not¡¡twinkling¡­of¡¡B¡£¡¡Consequently¡¡A¡¡is¡¡predicable



of¡¡C£»¡¡and¡¡the¡¡syllogism¡¡proves¡¡the¡¡reasoned¡¡fact£»¡¡since¡¡its¡¡middle



term¡¡is¡¡the¡¡proximate¡¡cause¡£¡¡Another¡¡example¡¡is¡¡the¡¡inference¡¡that¡¡the



moon¡¡is¡¡spherical¡¡from¡¡its¡¡manner¡¡of¡¡waxing¡£¡¡Thus£º¡¡since¡¡that¡¡which¡¡so



waxes¡¡is¡¡spherical£»¡¡and¡¡since¡¡the¡¡moon¡¡so¡¡waxes£»¡¡clearly¡¡the¡¡moon¡¡is



spherical¡£¡¡Put¡¡in¡¡this¡¡form£»¡¡the¡¡syllogism¡¡turns¡¡out¡¡to¡¡be¡¡proof¡¡of



the¡¡fact£»¡¡but¡¡if¡¡the¡¡middle¡¡and¡¡major¡¡be¡¡reversed¡¡it¡¡is¡¡proof¡¡of¡¡the



reasoned¡¡fact£»¡¡since¡¡the¡¡moon¡¡is¡¡not¡¡spherical¡¡because¡¡it¡¡waxes¡¡in¡¡a



certain¡¡manner£»¡¡but¡¡waxes¡¡in¡¡such¡¡a¡¡manner¡¡because¡¡it¡¡is¡¡spherical¡£



£¨Let¡¡C¡¡be¡¡the¡¡moon£»¡¡B¡¡spherical£»¡¡and¡¡A¡¡waxing¡££©¡¡Again¡¡£¨b£©£»¡¡in¡¡cases



where¡¡the¡¡cause¡¡and¡¡the¡¡effect¡¡are¡¡not¡¡reciprocal¡¡and¡¡the¡¡effect¡¡is



the¡¡better¡¡known£»¡¡the¡¡fact¡¡is¡¡demonstrated¡¡but¡¡not¡¡the¡¡reasoned



fact¡£¡¡This¡¡also¡¡occurs¡¡£¨1£©¡¡when¡¡the¡¡middle¡¡falls¡¡outside¡¡the¡¡major¡¡and



minor£»¡¡for¡¡here¡¡too¡¡the¡¡strict¡¡cause¡¡is¡¡not¡¡given£»¡¡and¡¡so¡¡the



demonstration¡¡is¡¡of¡¡the¡¡fact£»¡¡not¡¡of¡¡the¡¡reasoned¡¡fact¡£¡¡For¡¡example£»



the¡¡question¡¡'Why¡¡does¡¡not¡¡a¡¡wall¡¡breathe£¿'¡¡might¡¡be¡¡answered£»



'Because¡¡it¡¡is¡¡not¡¡an¡¡animal'£»¡¡but¡¡that¡¡answer¡¡would¡¡not¡¡give¡¡the



strict¡¡cause£»¡¡because¡¡if¡¡not¡¡being¡¡an¡¡animal¡¡causes¡¡the¡¡absence¡¡of



respiration£»¡¡then¡¡being¡¡an¡¡animal¡¡should¡¡be¡¡the¡¡cause¡¡of



respiration£»¡¡according¡¡to¡¡the¡¡rule¡¡that¡¡if¡¡the¡¡negation¡¡of¡¡causes



the¡¡non¡­inherence¡¡of¡¡y£»¡¡the¡¡affirmation¡¡of¡¡x¡¡causes¡¡the¡¡inherence¡¡of



y£»¡¡e¡£g¡£¡¡if¡¡the¡¡disproportion¡¡of¡¡the¡¡hot¡¡and¡¡cold¡¡elements¡¡is¡¡the¡¡cause



of¡¡ill¡¡health£»¡¡their¡¡proportion¡¡is¡¡the¡¡cause¡¡of¡¡health£»¡¡and



conversely£»¡¡if¡¡the¡¡assertion¡¡of¡¡x¡¡causes¡¡the¡¡inherence¡¡of¡¡y£»¡¡the



negation¡¡of¡¡x¡¡must¡¡cause¡¡y's¡¡non¡­inherence¡£¡¡But¡¡in¡¡the¡¡case¡¡given¡¡this



consequence¡¡does¡¡not¡¡result£»¡¡for¡¡not¡¡every¡¡animal¡¡breathes¡£¡¡A



syllogism¡¡with¡¡this¡¡kind¡¡of¡¡cause¡¡takes¡¡place¡¡in¡¡the¡¡second¡¡figure¡£



Thus£º¡¡let¡¡A¡¡be¡¡animal£»¡¡B¡¡respiration£»¡¡C¡¡wall¡£¡¡Then¡¡A¡¡is¡¡predicable



of¡¡all¡¡B¡¡£¨for¡¡all¡¡that¡¡breathes¡¡is¡¡animal£©£»¡¡but¡¡of¡¡no¡¡C£»¡¡and



consequently¡¡B¡¡is¡¡predicable¡¡of¡¡no¡¡C£»¡¡that¡¡is£»¡¡the¡¡wall¡¡does¡¡not



breathe¡£¡¡Such¡¡causes¡¡are¡¡like¡¡far¡­fetched¡¡explanations£»¡¡which



precisely¡¡consist¡¡in¡¡making¡¡the¡¡cause¡¡too¡¡remote£»¡¡as¡¡in¡¡Anacharsis'



account¡¡of¡¡why¡¡the¡¡Scythians¡¡have¡¡no¡¡flute¡­players£»¡¡namely¡¡because



they¡¡have¡¡no¡¡vines¡£



¡¡¡¡Thus£»¡¡then£»¡¡do¡¡the¡¡syllogism¡¡of¡¡the¡¡fact¡¡and¡¡the¡¡syllogism¡¡of¡¡the



reasoned¡¡fact¡¡differ¡¡within¡¡one¡¡science¡¡and¡¡according¡¡to¡¡the



position¡¡of¡¡the¡¡middle¡¡terms¡£¡¡But¡¡there¡¡is¡¡another¡¡way¡¡too¡¡in¡¡which



the¡¡fact¡¡and¡¡the¡¡reasoned¡¡fact
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü