¡¶history of philosophy¡·

ÏÂÔØ±¾Êé

Ìí¼ÓÊéÇ©

history of philosophy- µÚ60²¿·Ö


°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
mathematics¡£¡¡When¡¡the¡¡education¡¡of¡¡his¡¡pupil¡¡was¡¡completed£»¡¡and¡¡the¡¡Baron¡¡Von¡¡Boineburg¡¡died£»
Leibnitz¡¡went¡¡on¡¡his¡¡own¡¡account¡¡to¡¡London£»¡¡where¡¡he¡¡became¡¡acquainted¡¡with¡¡Newton¡¡and
other¡¡scholars£»¡¡at¡¡whose¡¡head¡¡was¡¡Oldenburg£»¡¡who¡¡was¡¡also¡¡on¡¡friendly¡¡terms¡¡with¡¡Spinoza¡£¡¡After
the¡¡death¡¡of¡¡the¡¡Elector¡¡of¡¡Mayence£»¡¡the¡¡salary¡¡of¡¡Leibnitz¡¡ceased¡¡to¡¡be¡¡paid£»¡¡he¡¡therefore¡¡left
England¡¡and¡¡returned¡¡to¡¡France¡£¡¡The¡¡Duke¡¡of¡¡Brunswick¡­L¨¹neburg¡¡then¡¡took¡¡him¡¡into¡¡his¡¡service£»
and¡¡gave¡¡him¡¡the¡¡appointment¡¡of¡¡councillor¡¡and¡¡librarian¡¡at¡¡Hanover£»¡¡with¡¡permission¡¡to¡¡spend¡¡as
much¡¡time¡¡as¡¡he¡¡liked¡¡in¡¡foreign¡¡countries¡£¡¡He¡¡therefore¡¡remained¡¡for¡¡some¡¡time¡¡longer¡¡in¡¡France£»
England£»¡¡and¡¡Holland¡£¡¡In¡¡the¡¡year¡¡1677¡¡he¡¡settled¡¡down¡¡in¡¡Hanover£»¡¡where¡¡he¡¡became¡¡busily
engaged¡¡in¡¡affairs¡¡of¡¡state£»¡¡and¡¡was¡¡specially¡¡occupied¡¡with¡¡historical¡¡matters¡£¡¡In¡¡the¡¡Harz
Mountains¡¡he¡¡had¡¡works¡¡constructed¡¡for¡¡carrying¡¡off¡¡the¡¡floods¡¡which¡¡did¡¡damage¡¡to¡¡the¡¡mines
there¡£¡¡Notwithstanding¡¡these¡¡manifold¡¡occupations¡¡he¡¡invented¡¡the¡¡differential¡¡calculus¡¡in¡¡1677£»¡¡on
occasion¡¡of¡¡which¡¡there¡¡arose¡¡a¡¡dispute¡¡between¡¡him¡¡and¡¡Newton£»¡¡which¡¡was¡¡carried¡¡on¡¡by¡¡the
latter¡¡and¡¡the¡¡Royal¡¡Society¡¡of¡¡London¡¡in¡¡a¡¡most¡¡ungenerous¡¡manner¡£¡¡For¡¡it¡¡was¡¡asserted¡¡by¡¡the
English£»¡¡who¡¡gave¡¡themselves¡¡the¡¡credit¡¡of¡¡everything£»¡¡and¡¡were¡¡very¡¡unfair¡¡to¡¡others£»¡¡that¡¡the
discovery¡¡was¡¡really¡¡made¡¡by¡¡Newton¡£¡¡But¡¡Newton's¡¡Principia¡¡only¡¡appeared¡¡later£»¡¡and¡¡in¡¡the
first¡¡edition¡¡indeed¡¡Leibnitz¡¡was¡¡mentioned¡¡with¡¡commendation¡¡in¡¡a¡¡note¡¡which¡¡was¡¡afterwards
omitted¡£¡¡From¡¡his¡¡headquarters¡¡in¡¡Hanover£»¡¡Leibnitz£»¡¡commissioned¡¡by¡¡his¡¡prince£»¡¡made¡¡several
journeys¡¡through¡¡Germany£»¡¡and¡¡also¡¡went¡¡to¡¡Italy¡¡in¡¡order¡¡to¡¡collect¡¡historical¡¡evidence¡¡relative¡¡to
the¡¡House¡¡of¡¡Este£»¡¡and¡¡for¡¡the¡¡purpose¡¡of¡¡proving¡¡more¡¡clearly¡¡the¡¡relationship¡¡between¡¡this
princely¡¡family¡¡and¡¡that¡¡of¡¡Brunswick¡­L¨¹neburg¡£¡¡At¡¡other¡¡times¡¡he¡¡was¡¡likewise¡¡much¡¡occupied
with¡¡historical¡¡questions¡£¡¡Owing¡¡to¡¡his¡¡acquaintance¡¡with¡¡the¡¡consort¡¡of¡¡Frederick¡¡I¡£¡¡of¡¡Prussia£»
Sophia¡¡Charlotte£»¡¡a¡¡Hanoverian¡¡princess£»¡¡he¡¡was¡¡enabled¡¡to¡¡bring¡¡about¡¡the¡¡foundation¡¡of¡¡an
Academy¡¡of¡¡Science¡¡in¡¡Berlin£»¡¡in¡¡which¡¡city¡¡he¡¡lived¡¡for¡¡a¡¡considerable¡¡time¡£¡¡In¡¡Vienna¡¡he¡¡also
became¡¡acquainted¡¡with¡¡Prince¡¡Eug¨¨ne£»¡¡which¡¡occasioned¡¡his¡¡being¡¡appointed¡¡finally¡¡an¡¡Imperial
Councillor¡£¡¡He¡¡published¡¡several¡¡very¡¡important¡¡historical¡¡works¡¡as¡¡the¡¡result¡¡of¡¡this¡¡journey¡£¡¡His
death¡¡took¡¡place¡¡at¡¡Hanover¡¡in¡¡1716£»¡¡when¡¡he¡¡was¡¡seventy¡¡years¡¡of¡¡age¡££¨1£©

It¡¡was¡¡not¡¡only¡¡on¡¡Philosophy£»¡¡but¡¡also¡¡on¡¡the¡¡most¡¡varied¡¡branches¡¡of¡¡science¡¡that¡¡Leibnitz
expended¡¡toil¡¡and¡¡trouble¡¡and¡¡energy£»¡¡it¡¡was¡¡to¡¡mathematics£»¡¡however£»¡¡that¡¡he¡¡specially¡¡devoted
his¡¡attention£»¡¡and¡¡he¡¡is¡¡the¡¡inventor¡¡of¡¡the¡¡methods¡¡of¡¡the¡¡integral¡¡and¡¡differential¡¡calculus¡£¡¡His¡¡great
services¡¡in¡¡regard¡¡to¡¡mathematics¡¡and¡¡physics¡¡we¡¡here¡¡leave¡¡out¡¡of¡¡consideration£»¡¡and¡¡pay
attention¡¡to¡¡his¡¡philosophy¡¡alone¡£¡¡None¡¡of¡¡his¡¡books¡¡can¡¡be¡¡exactly¡¡looked¡¡on¡¡as¡¡giving¡¡a
complete¡¡systematic¡¡account¡¡of¡¡his¡¡philosophy¡£¡¡To¡¡the¡¡more¡¡important¡¡among¡¡them¡¡belongs¡¡his
work¡¡on¡¡the¡¡human¡¡understanding¡¡£¨Nouveaux¡¡essais¡¡sur¡¡l'entendement¡¡humain£©¡¡in¡¡reply¡¡to
Locke£»¡¡but¡¡this¡¡is¡¡a¡¡mere¡¡refutation¡£¡¡His¡¡philosophy¡¡is¡¡therefore¡¡scattered¡¡through¡¡various¡¡little
treatises¡¡which¡¡were¡¡written¡¡in¡¡very¡¡various¡¡connections£»¡¡in¡¡letters£»¡¡and¡¡replies¡¡to¡¡objections¡¡which
caused¡¡him¡¡to¡¡bring¡¡out¡¡one¡¡aspect¡¡of¡¡the¡¡question¡¡more¡¡strongly¡¡than¡¡another£»¡¡we¡¡consequently
find¡¡no¡¡elaborated¡¡systematic¡¡whole£»¡¡superintended¡¡or¡¡perfected¡¡by¡¡him¡£¡¡The¡¡work¡¡which¡¡has
some¡¡appearance¡¡of¡¡being¡¡such£»¡¡his¡¡Th¨¦odic¨¦e£»¡¡better¡¡known¡¡to¡¡the¡¡public¡¡than¡¡any¡¡thing¡¡else¡¡he
wrote£»¡¡is¡¡a¡¡popular¡¡treatise¡¡which¡¡he¡¡drewup¡¡for¡¡Queen¡¡Sophia¡¡Charlotte¡¡in¡¡reply¡¡to¡¡Bayle£»¡¡and¡¡in
which¡¡he¡¡took¡¡pains¡¡not¡¡to¡¡present¡¡the¡¡matter¡¡in¡¡very¡¡speculative¡¡form¡£¡¡A¡¡W¨¹rtemberg¡¡theologian£»
Pfaff¡¡by¡¡name£»¡¡and¡¡others¡¡who¡¡were¡¡correspondents¡¡of¡¡Leibnitz¡¡and¡¡were¡¡themselves¡¡only¡¡too
well¡¡versed¡¡in¡¡philosophy£»¡¡brought¡¡it¡¡as¡¡a¡¡charge¡¡against¡¡Leibnitz¡¡¡ª¡¡a¡¡charge¡¡which¡¡he¡¡never
denied¡¡¡ª¡¡that¡¡his¡¡philosophy¡¡was¡¡written¡¡in¡¡popular¡¡form¡££¨2£©¡¡They¡¡laughed¡¡very¡¡much¡¡afterwards
at¡¡Wolff£»¡¡who¡¡had¡¡taken¡¡them¡¡to¡¡be¡¡quite¡¡in¡¡earnest£»¡¡his¡¡opinion¡¡was¡¡that¡¡if¡¡Leibnitz¡¡were¡¡not
perfectly¡¡serious¡¡in¡¡this¡¡sense¡¡with¡¡his¡¡Th¨¦odic¨¦e£»¡¡yet¡¡he¡¡had¡¡unconsciously¡¡written¡¡his¡¡best
therein¡£¡¡Leibnitz's¡¡Th¨¦odic¨¦e¡¡is¡¡not¡¡what¡¡we¡¡can¡¡altogether¡¡appreciate£»¡¡it¡¡is¡¡a¡¡justification¡¡of¡¡God
in¡¡regard¡¡to¡¡the¡¡evil¡¡in¡¡the¡¡world¡£¡¡His¡¡really¡¡philosophic¡¡thoughts¡¡are¡¡most¡¡connectedly¡¡expressed
in¡¡a¡¡treatise¡¡on¡¡the¡¡principles¡¡of¡¡Grace¡¡£¨Principes¡¡de¡¡la¡¡Nature¡¡et¡¡de¡¡la¡¡Grace£©£»£¨3£©¡¡and¡¡especially
in¡¡the¡¡pamphlet¡¡addressed¡¡to¡¡Prince¡¡Eug¨¦ne¡¡of¡¡Savoy¡££¨4£©¡¡¡£Buhle¡¡£¨Geschichte¡¡der¡¡neuern
Philosophie£»¡¡vol¡£¡¡iv¡£¡¡section¡¡1£»¡¡p¡£¡¡131£©¡¡says£º¡¡¡°His¡¡philosophy¡¡is¡¡not¡¡so¡¡much¡¡the¡¡product¡¡of¡¡free£»
independent£»¡¡original¡¡speculation£»¡¡as¡¡the¡¡result¡¡of¡¡well¡­tested¡¡earlier¡±¡¡and¡¡later¡¡¡°systems£»¡¡an
eclecticism¡¡whose¡¡defects¡¡he¡¡tried¡¡to¡¡remedy¡¡in¡¡his¡¡own¡¡way¡£¡¡It¡¡is¡¡a¡¡desultory¡¡treatment¡¡of
Philosophy¡¡in¡¡letters¡£¡±

Leibnitz¡¡followed¡¡the¡¡same¡¡general¡¡plan¡¡in¡¡his¡¡philosophy¡¡as¡¡the¡¡physicists¡¡adopt¡¡when¡¡they
advance¡¡a¡¡hypothesis¡¡to¡¡explain¡¡existing¡¡data¡£¡¡He¡¡has¡¡it¡¡that¡¡general¡¡conceptions¡¡of¡¡the¡¡Idea¡¡are¡¡to
be¡¡found£»¡¡from¡¡which¡¡the¡¡particular¡¡may¡¡be¡¡derived£»¡¡here£»¡¡on¡¡account¡¡of¡¡existing¡¡data£»¡¡the¡¡general
conception£»¡¡for¡¡example¡¡the¡¡determination¡¡of¡¡force¡¡or¡¡matter¡¡furnished¡¡by¡¡reflection£»¡¡must¡¡have¡¡its
determinations¡¡disposed¡¡in¡¡such¡¡a¡¡way¡¡that¡¡it¡¡fits¡¡in¡¡with¡¡the¡¡data¡£¡¡Thus¡¡the¡¡philosophy¡¡of¡¡Leibnitz
seems¡¡to¡¡be¡¡not¡¡so¡¡much¡¡a¡¡philosophic¡¡system¡¡as¡¡an¡¡hypothesis¡¡regarding¡¡the¡¡existence¡¡of¡¡the
world£»¡¡namely¡¡how¡¡it¡¡is¡¡to¡¡be¡¡determined¡¡in¡¡accordance¡¡with¡¡the¡¡metaphysical¡¡determinations¡¡and
the¡¡data¡¡and¡¡assumptions¡¡of¡¡the¡¡ordinary¡¡conception£»¡¡which¡¡are¡¡accepted¡¡as¡¡valid£¨5£©¡¡¡ª¡¡thoughts
which¡¡are¡¡moreover¡¡propounded¡¡without¡¡the¡¡sequence¡¡pertaining¡¡to¡¡the¡¡Notion¡¡and¡¡mainly¡¡in
narrative¡¡style£»¡¡and¡¡which¡¡taken¡¡by¡¡themselves¡¡show¡¡no¡¡necessity¡¡in¡¡their¡¡connection¡£¡¡Leibnitz's
philosophy¡¡therefore¡¡appears¡¡like¡¡a¡¡string¡¡of¡¡arbitrary¡¡assertions£»¡¡which¡¡follow¡¡one¡¡on¡¡another¡¡like
a¡¡metaphysical¡¡romance£»¡¡it¡¡is¡¡only¡¡when¡¡we¡¡see¡¡what¡¡he¡¡wished¡¡thereby¡¡to¡¡avoid¡¡that¡¡we¡¡learn¡¡to
appreciate¡¡its¡¡value¡£¡¡He¡¡really¡¡makes¡¡use¡¡of¡¡external¡¡reasons¡¡mainly¡¡in¡¡order¡¡to¡¡establish¡¡relations£º
¡°Because¡¡the¡¡validity¡¡of¡¡such¡¡relations¡¡cannot¡¡be¡¡allowed£»¡¡nothing¡¡remains¡¡but¡¡to¡¡establish¡¡the
matter¡¡in¡¡this¡¡way¡£¡±¡¡If¡¡we¡¡are¡¡not¡¡acquainted¡¡with¡¡these¡¡reasons£»¡¡this¡¡procedure¡¡strikes¡¡us¡¡as
arbitrary¡£

a¡£¡¡Leibnitz's¡¡philosophy¡¡is¡¡an¡¡idealism¡¡of¡¡the¡¡intellectuality¡¡of¡¡the¡¡universe£»¡¡and¡¡although¡¡from¡¡one
point¡¡of¡¡view¡¡he¡¡stands¡¡opposed¡¡to¡¡Locke£»¡¡as¡¡from¡¡another¡¡point¡¡of¡¡view¡¡he¡¡is¡¡in¡¡opposition¡¡to¡¡the
Substance¡¡of¡¡Spinoza£»¡¡he¡¡yet¡¡binds¡¡them¡¡both¡¡together¡¡again¡£¡¡For£»¡¡to¡¡go¡¡into¡¡the¡¡matter¡¡more
particularly£»¡¡on¡¡the¡¡one¡¡hand¡¡he¡¡expresses¡¡in¡¡the¡¡many¡¡monads¡¡the¡¡absolute¡¡nature¡¡of¡¡things
distinguished¡¡and¡¡of¡¡individuality£»¡¡on¡¡the¡¡other¡¡hand£»¡¡in¡¡contrast¡¡to¡¡this¡¡and¡¡apart¡¡from¡¡it£»¡¡he
expresses¡¡the¡¡ideality¡¡of¡¡Spinoza¡¡and¡¡the¡¡non¡­absolute¡¡nature¡¡of¡¡all¡¡difference£»¡¡as¡¡the¡¡idealism¡¡of
the¡¡popular¡¡conception¡£¡¡Leibnitz's¡¡philosophy¡¡is¡¡a¡¡metaphysics£»¡¡and¡¡in¡¡sharp¡¡contrast¡¡to¡¡the¡¡simple
universal¡¡Substance¡¡of¡¡Spinoza£»¡¡where¡¡all¡¡that¡¡is¡¡determined¡¡is¡¡merely¡¡transitory£»¡¡it¡¡makes
fundamental¡¡the¡¡absolute¡¡multiplicity¡¡of¡¡individual¡¡substances£»¡¡which¡¡after¡¡the¡¡example¡¡of¡¡the
ancients¡¡he¡¡named¡¡monads¡¡¡ª¡¡an¡¡expression¡¡already¡¡used¡¡by¡¡the¡¡Pythagoreans¡£¡¡These¡¡monads¡¡he
then¡¡proceeds¡¡to¡¡determine¡¡as¡¡follows¡£

Firstly£º¡¡¡°Substance¡¡is¡¡a¡¡thing¡¡that¡¡is¡¡capable¡¡of¡¡activity£»¡¡it¡¡is¡¡compound¡¡or¡¡simple£»¡¡the¡¡compound
cannot¡¡exist¡¡without¡¡the¡¡simple¡£¡¡The¡¡monads¡¡are¡¡simple¡¡substances¡£¡±¡¡The¡¡proof¡¡that¡¡they
constitute¡¡the¡¡truth¡¡in¡¡all¡¡things¡¡is¡¡very¡¡simple£»¡¡it¡¡is¡¡a¡¡superficial¡¡reflection¡£¡¡For¡¡instance£»¡¡one¡¡of
Leibnitz's¡¡maxims¡¡is£º¡¡¡°Because¡¡there¡¡are¡¡compound¡¡things£»¡¡the¡¡principles¡¡of¡¡the¡¡same¡¡must¡¡be
simple£»¡¡for¡¡the¡¡compound¡¡consists¡¡of¡¡the¡¡simple¡£¡±£¨6£©¡¡This¡¡proof¡¡is¡¡poor¡¡enough£»¡¡it¡¡is¡¡an¡¡example¡¡of
the¡¡favourite¡¡way¡¡of¡¡starting¡¡from¡¡something¡¡definite£»¡¡say¡¡the¡¡compound£»¡¡and¡¡then¡¡drawing
conclusions¡¡therefrom¡¡as¡¡to¡¡the¡¡simple¡£¡¡It¡¡is¡¡quite¡¡right¡¡in¡¡a¡¡way£»¡¡but¡¡really¡¡it¡¡is¡¡tautology¡£¡¡Of
course£»¡¡if¡¡the¡¡compound¡¡exists£»¡¡so¡¡does¡¡the¡¡simple£»¡¡for¡¡the¡¡compound¡¡means¡¡something¡¡in¡¡itself
manifold¡¡whose¡¡connection¡¡or¡¡unity¡¡is¡¡external¡£¡¡From¡¡the¡¡very¡¡trivial¡¡category¡¡of¡¡the¡¡compound¡¡it
is¡¡easy¡¡to¡¡deduce¡¡the¡¡simple¡£¡¡It¡¡is¡¡a¡¡conclusion¡¡drawn¡¡from¡¡a¡¡certain¡¡premiss£»¡¡but¡¡the¡¡question¡¡is
whether¡¡the¡¡premiss¡¡is¡¡true¡£¡¡These¡¡monads¡¡are¡¡not£»¡¡however£»¡¡something¡¡abstract¡¡and¡¡simple¡¡in
itself£»¡¡like¡¡the¡¡empty¡¡Epicurean¡¡atoms£»¡¡which£»¡¡as¡¡they¡¡were¡¡in¡¡themselves¡¡lacking¡¡in¡¡determination£»
drew¡¡all¡¡their¡¡determination¡¡from¡¡their¡¡aggregation¡¡alone¡£¡¡The¡¡monads¡¡are£»¡¡on¡¡the¡¡contrary£»
substantial¡¡forms£»¡¡a¡¡good¡¡expression£»¡¡borrowed¡¡from¡¡the¡¡Scholastics¡¡£¨supra£»¡¡p¡£¡¡71£©£»¡¡or¡¡the
metaphysical¡¡points¡¡of¡¡the¡¡Alexandrian¡¡School¡¡£¨Vol¡£¡¡II¡£¡¡p¡£¡¡439£©£»¡¡they¡¡are¡¡the¡¡entelechies¡¡of
Aristotle¡¡taken¡¡as¡¡pure¡¡activity£»¡¡which¡¡are¡¡forms¡¡in¡¡themselves¡¡£¨Vol¡£¡¡II¡£¡¡pp¡£¡¡138£»¡¡182£»¡¡183£©¡£
¡°These¡¡monads¡¡are¡¡not¡¡material¡¡or¡¡extended£»¡¡nor¡¡do¡¡they¡¡originate¡¡or¡¡decay¡¡in¡¡the¡¡natural¡¡fashion£»
for¡¡they¡¡can¡¡begin¡¡only¡¡by¡¡a¡¡creative¡¡act¡¡of¡¡God£»¡¡and¡¡they¡¡can¡¡end¡¡only¡¡by¡¡annihilation¡£¡±£¨7£©
Thereby¡¡they¡¡are¡¡distinguished¡¡from¡¡the¡¡atoms£»¡¡which¡¡are¡¡regarded¡¡simply¡¡as¡¡principles¡£¡¡The
expression¡¡creation¡¡we¡¡are¡¡familiar¡¡with¡¡from¡¡religion£»¡¡but¡¡it¡¡is¡¡a¡¡meaningless¡¡word¡¡derived¡¡from
the¡¡ordinary¡¡conception£»¡¡in¡¡order¡¡to¡¡be¡¡a¡¡thought¡¡and¡¡to¡¡have¡¡philosophic¡¡significance£»¡¡it¡¡must¡¡be
much¡¡more¡¡closely¡¡defined¡£

Secondly£º¡¡¡°On¡¡account¡¡of¡¡their¡¡simplicity¡¡the¡¡monads¡¡are¡¡not¡¡susceptible¡¡of¡¡alteration¡¡by¡¡another
monad¡¡in¡¡their¡¡inner¡¡essence£»¡¡there¡¡is¡¡no¡¡causal¡¡connection¡¡between¡¡them¡£¡±¡¡Each¡¡of¡¡them¡¡is
something¡¡indifferent¡¡and¡¡independent¡¡as¡¡regards¡¡the¡¡rest£»¡¡otherwise¡¡it¡¡would¡¡not¡¡be¡¡an¡¡entelechy¡£
Each¡¡of¡¡them¡¡is¡¡so¡¡much¡¡for¡¡itself¡¡that¡¡all¡¡its¡¡determinations¡¡and¡¡modifications¡¡go¡¡on¡¡in¡¡itself¡¡alone£»
and¡¡no¡¡determination¡¡from¡¡without¡¡takes¡¡place¡£¡¡Leibnitz¡¡says£º¡¡¡°There¡¡are¡¡three¡¡ways¡¡in¡¡which
substances¡¡are¡¡connected£º¡¡£¨1£©¡¡Causality£»¡¡influence£»¡¡£¨2£©¡¡The¡¡relation¡¡of¡¡assistance£»¡¡£¨3£©¡¡The¡¡relation
of¡¡harmony¡£¡¡The¡¡relation¡¡of¡¡influence¡¡is¡¡a¡¡relation¡¡pertaining¡¡to¡¡a¡¡commonplace¡¡or¡¡popular
philosophy¡£¡¡But¡¡as¡¡it¡¡is¡¡impossible¡¡to¡¡understand¡¡how¡¡material¡¡particles
СÌáʾ£º°´ »Ø³µ [Enter] ¼ü ·µ»ØÊéÄ¿£¬°´ ¡û ¼ü ·µ»ØÉÏÒ»Ò³£¬ °´ ¡ú ¼ü ½øÈëÏÂÒ»Ò³¡£ ÔÞһϠÌí¼ÓÊéÇ©¼ÓÈëÊé¼Ü